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Abstract

We present a system for predicting building footprints by using remote sensing data in the
form of aerial photography (RGB) and LiDAR elevation measurements (DSMs). Techniques
for converting data from conventional GIS vector and raster formats to a format suitable for
machine learning purposes are discussed. The U-Net model architecture is used in order to
train several model variants on a labeled building footprint dataset covering the Norwegian
municipality of Trondheim. A model using aerial photography in combination with LiDAR
elevation data achieved the best mean IoU test score.
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Introduction

Remote sensing is the process of gathering information about an object without making phys-
ical contact, one such technology being aerial photography. Although aerial RGB photography
is intuitively interpretable for humans, it is fundamentally two-dimensional. LiDAR, another
remote sensing technology, is able to measure distances to object surfaces by directing a beam of
light and measuring the time of arrival and wavelength of the ensuing reflection. The resulting
data can therefore be used to construct a three-dimensional spatial representation of the object
of interest. LiDAR has been applied in a wide array of fields such as meteorology [42], forestry
analysis [10], urban flood modelling [43], and autonomous driving systems [25].

One of the applications of LiDAR technology is the construction of digital surface models (DSMs).
DSMs are grayscale images representing the earth’s surface including all above-surface objects
such as natural canopy and human-made objects. In contrast, digital terrain models (DTMs)
represent the elevation of the bare ground where all above-surface objects have been artificially
removed. While DTMs are often used in geographic and cartographic applications, DSMs can
be used for localization and classification of objects above ground.

LiDAR data and aerial photography is usually provided by the respective cadastral authority
in a given country. Cadastral authorities are also responsible for keeping records of cadastral
data such as cadastral plots, roads, and buildings. The exact type and quality of this data
varies substantially between countries and sometimes even between administrative regions in the
same country. This raises the question: “Can high-fidelity insights be inferred from otherwise
low-fidelity geographic data?”. Figure 1 shows an outline of the possible “data enhancements”
which are of interest within this domain.

High-fidelity	data

+ Roof surfaces (3D polygons)

+ Orthophotography

Medium-fidelity	data

+ Building outlines (2D polygons)

+ Edge features (2D line segments)

Low-fidelity	data

Raw elevation data (DSM)

Aerial photography (RGB)

Cadastral plots (2D polygons)

Inference Inference

Figure 1: Classification of geographic data quality. The classifications reflect a general observed
trend in data sets, and a given region may therefore not fit into exactly one of these categories.
Some of the data types mentioned here will be described in Section 2.

The Norwegian Mapping and Cadastre Authority (Statens Kartverk) provides geographic data of
uniquely high quality for the entirety of Norway. This offers an opportunity to train supervised
machine learning models on lower fidelity data in order to infer higher fidelity features. Such
models can then be applied in other regions where only low-fidelity data is available as a method
of data enhancement.

Research questions

A building outline is a two-dimensional representation of building “footprint”. Such data can be
used for map annotations, flood risk analysis, and population density estimates, amongst other
applications. The identification of building outlines from remote sensing data can be formulated
as a semantic segmentation task, a heavily researched topic which has had many advances in the
last decade. Geographic data, such as building outlines, are formatted in an unsuitable way for
direct machine learning, and must therefore be purposefully transformed and pre-processed. The
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development of a data pipeline for geographic data is the first topic of research in this thesis.

RQ1 How can geographic data representation be transformed into a format suitable for machine
learning?

After having developed such a pipeline, the focus will be to develop a segmentation model for
identifying building footprints with data from this pipeline. The use of aerial photography and
LiDAR data from the Norwegian municipality of Trondheim will be investigated, as well as the
combination of these two data sources.

RQ2 How can aerial photography and/or LiDAR data be used to predict accurate building
outlines?

These research questions will lay down the ground work for my upcoming master’s thesis where
I will investigate the possibility of inferring roof surfaces represented as three-dimensional poly-
gons from remote sensing data. Three-dimensional representations of buildings can for example
be used for urban planning purposes. Another application, which incidentally prompted this
research question in the first place, is the use of roof surface geometries to estimate the potential
energy production of roof-mounted solar panel installations.

Thesis disposition

We will start by providing an overview of the problem domain of image segmentation and the
methods currently being applied in the field in Section 1. An introduction to the world of Geo-
graphic Information Systems (GIS); the field which concerns itself with representing geographic
data, will follow in Section 2. We will also describe how to preprocess such geographic data
in order to train accurate machine learning models. The training procedure and experimental
results will be presented and discussed in Section 3.
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1 Image Segmentation — Central Concepts and Existing
Work

The field of computer vision got started in the early 1970s [55, p. 10]. Computer vision differs from
the classical discipline of digital image processing by concerning itself with the three-dimensional
reconstruction of a scene from two-dimensional data [55, p. 10]. Most of the early research in
the field revolved around manually designed feature extraction and processing techniques, but
statistical techniques started to become popular in the 1990s [55, p. 15]. The statistical approach
eventually morphed into the field of machine learning, where most of the research advances are
made today [55, p. 17].

We will start by describing the particular image recognition problem of interest, namely semantic
segmentation. Convolutional neural networks (CNNs) have been applied to image segmentation
problems with great success [38, p. 1], and Section 1.2 provides a theoretic overview of the elemen-
tary building blocks used to construct modern CNN architectures. Section 1.3 will summarize
the metrics used for evaluating the quality of image segmentation predictions. State-of-the-art
CNN architectures for image segmentation will be listed in Section 1.4.

1.1 Problem Description

Image recognition seeks to answer three questions for any given image [38]:

1. Identification: Does the image contain any object of interest?
2. Localization: Where in the image are the objects situated?
3. Classification: To which categories do the objects belong to?

We will concern ourselves with only one object category (class) at any time, that class being
building footprints, and will simplify the following theory accordingly with this simplification
in mind. The localization and classification of objects in a given image can be performed at
different granularity levels, as shown in Figure 2.

Bounding Box Regression Semantic Segmentation Instance Segmentation

Figure 2: Different granularities for single-class building localization, using the Trondheim 2017
data set. Bounding box regression is shown on the left, semantic segmentation in the middle,
and instance segmentation on the right.

Bounding box regression concerns itself with finding the smallest possible rectangles which en-
velopes the objects of interest. The sides of the rectangles may either by oriented parallel to the
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axis directions, or rotated in order to attain the smallest possible envelope. The bounding box
will therefore necessarily contain pixels that are not part of the object itself whenever the object
shape is not perfectly rectangular.

Semantic segmentation rectifies this issue by classifying each pixel in the image independently,
i.e. pixel-wise classification, producing a so-called classification mask. Instance segmentation
distinguishes between pixels belonging to different objects of the same class, while semantic
segmentation does not make this distinction. Since a bounding box can be directly derived from
a semantic segmentation mask, and a semantic segmentation mask can be directly derived from
instance segmentation mask; the problem complexity of these tasks are as follows:

Bounding box regression < Semantic segmentation < Instance segmentation

An image of width W and height H consisting of C channels is represented by a W × H × C
tensor, X ∈ RW×H×C . This is somewhat simplified, but we will give a more nuanced description
in Section 2.2. Single-class semantic segmentation can therefore be formalized as constructing a
binary predictor f̃ of the form:

f̃ : RW×H×C → BW×H , B := {0, 1}.

Where BW×H denotes a boolean matrix, 1 indicating that the pixel is part of the object class of
interest, and 0 indicates the opposite. In practice, however, statistical models will often predict
a pixel-wise class confidence in the continuous domain [0, 1],

f̂ : RW×H×C → [0, 1]
W×H

,

but a binary predictor can be easily constructed by choosing a suitable threshold, T , for which
to distinguish positive predictions from negative ones

f̃(X) = f̂(X) > T, X ∈ RW×H×C .

The choice of the threshold value T will affect the resulting sensitivity and specificity metrics of
the model predictions, metrics which will be explained in the upcoming Section 1.3.

1.2 Convolutional Neural Networks (CNNs)

There exists countless variations of the CNN model architecture, but there are still some ele-
mentary building blocks which they often have in common. We will start by sketching generic
big picture of CNNs before going into detail about each modular building block. Figure 3 illus-
trates the architecture of U-Net, and we will use this figure to illustrate the common concepts of
segmentation CNNs without considering the unique properties of U-Net specifically.
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6464 I

128 128 I/
2

256 256 I/
4

512 512 I/
8

1024 1024 I/
16

Bottleneck Conv

512 512 512 512 I/
8

256 256 256 256 I/
4

128 128 128 128 I/
2

64 64 64 64 I

Sigmoid

Figure 3: Illustration of the U-Net architecture for single-class segmentation, a typical example
of an encoder/decoder structure. Convolution layers are shown in orange, and max pooling
layers in red. Arrows indicates how data is forwarded through the network, top arrows being
skip connections. The right hand side shows the upscaling performed by transposed convolution
until the original resolution is restored and segmentation predictions can be formed with the
sigmoid activation function (shown in purple). Figure has been generated by modifying a tikz
example provided in the MIT licenced PlotNeuralNet library available at this URL: https:
//github.com/HarisIqbal88/PlotNeuralNet.

A CNN consists of several layered blocks operating over identical input dimensions within each
block. These blocks are shown as contiguous boxes in Figure 3. The first layer in each block
is a convolutional layer, which is a type of trainable feature extraction where several filtered
feature maps are constructed. Each feature map is passed through a nonlinear activation func-
tion and the activations are subsequently downsampled in order to reduce the resolution. The
downsampling is performed by a pooling layer and the output is forwarded to the next block.
The number of feature maps that are extracted from the previous pooled activations increases
as the resolution is decreased, and the right half of the architecture is eventually responsible for
upsampling the resolution back to the original resolution by the means of deconvolution. The
upsampling half of this network is not common to all CNNs, as CNNs tasked with bounding box
regression and classification are not required to restore the original resolution before prediction.
The upcoming sections will describe these concepts in more detail.

Convolution

As the name implies, a central concept of convolutional neural networks is the convolution op-
erator. Let the kernel, w, be a Hk ×Wk real matrix, and denote the activation of the previous
layer at position (x, y) as ax,y. The convolution operator, ~, is then defined as

w ~ ax,y =
∑
i

∑
j

wi,j ax−i,y−j , ax,y ∈ R, w ∈ RHk×Wk ,

where (i, j) spans the index set of the kernel. The region around ax,y which is involved in the
convolution is referred to as the receptive field. We can generate a filtered image by moving
this receptive field over the entire input image. The step size used when moving the receptive
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field is referred to as the stride size of the convolution. Such a moving convolution is illustrated
in Figure 4.


0 0 0 0 0 0
0 1 2 0 0 0
0 5 3 0 4 0
0 0 0 0 7 0
0 9 3 0 0 0
0 0 0 0 0 0


Zero-padded input

∗

 1 1 1
1 1 0
1 0 0


Kernel

=


1 8 5 0
8 11 5 4
8 17 10 11
9 12 10 7


Convolved output

Figure 4: Visualization of a kernel convolution with a 3× 3 kernel over an image of size 4× 4
with additional zero-padding and stride size of 1 × 1. The receptive field is shown in orange,
the respective kernel weights in blue, and the resulting convolution output in green. The zero
padding of the input image is shown in gray.

In the case of input images or activations comprised of more than one channel, independent
two-dimensional kernels are constructed for each channel and the convolved outputs are finally
summed in order to attain a single feature map. The concept of a kernel predates neural networks
as it has been used for feature extraction in the field of image processing for many years [55,
p. 11]. The kernel weights determine the type of features being extracted from the given input
image, some common interpretable kernels are given below.

w1 =

0 0 0
0 1 0
0 0 0


Identity kernel

, w2 =

−1 −1 −1
−1 8 −1
−1 −1 −1


Edge detection kernel

, w3 =
1

9

1 1 1
1 1 1
1 1 1


Normalized box blur kernel

, w4 =
1

16

1 2 1
2 4 2
1 2 1


Gaussian blur kernel

.

It is important to notice that kernel convolution has the additional effect of reducing the dimen-
sionality of the input image. Firstly, pixels along the image border are partially ignored since
the receptive field can not be properly centered on these pixel. Secondly, a horizontal stride of
Wk > 1 or a vertical stride of Hk > 1 will cause additional dimensional reduction. For an image
of size H ×W and a kernel of size Hk ×Wk, the input image is reduced to size⌊

(H −Hk +Hs)/Hs

⌋
×
⌊
(W −Wk +Ws)/Ws

⌋
.

as shown by [57]. The reduction in dimensionality when using stride sizes of one is often unde-
sirable, and for this reason it is common to add a padding filled with zero-values along the edges
of the input image. Applying a padding of height Hp at the horizontal borders and a padding of
width Wp at the vertical borders results in a feature map of size⌊

(H −Hk +Hs + Hp)/Hs

⌋
×
⌊
(W −Wk +Ws + Wp)/Ws

⌋
.

If we assume the input height and width to be divisible by the stride height and width respectively,
we can set Hp = Hk − 1 and Wp = Wk − 1 in order to attain an output shape of (H/Hs) ×
(W/Ws) [57]. Such a padding is shown in gray in Figure 4.
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CNNs apply multiple different convolutions to the same input, resulting in a set of differently
filtered outputs. After having applied the layer’s activation function to the output (see upcoming
section about “activation functions”) and the activations have been downsampled (see upcoming
“pooling” section), the filtered outputs are passed onto the next layer. The number of filters are
usually increased as you move deeper into the network where the resolution has been increasingly
downsampled. Unlike classical image processing, where kernel weights are carefully selected in
order to construct an intended type of feature extraction, CNNs let each kernel weight be a
trainable parameter. As the network is trained each kernel learns to extract features which are
of use for the subsequent layers.

An important aspect of convolution is that the kernel weights remain unchanged as the receptive
field is moved over the input image. This parameter sharing results in regions being treated
identically no matter where in the image they are situated [18]. The sharing of parameters has the
benefit of reducing the parametric complexity of the network, thus decreasing the computational
cost of training it. Finally, compared to a more classical fully connected feedforward network,
which operates over flattened vectors, a fully convolutional neural network operates over images
in matrix form, thus taking the spatial relationship between pixels into account.

Activation functions

So far we have only explained how a convolutional neural network consists of a set of parametrized
linear operations. Such a network, if left unaltered, is therefore restricted to only approximating
linear functions. The solution to this predicament is to introduce the concept of an activa-
tion function, a nonlinear function applied to the output from the convolutional layers. These
activation functions were originally inspired by the neuroscientific understanding of biological
neurons [19, p. 165], but have since been shown to be a theoretical prerequisite of the universal
approximation property of artificial neural networks [8, 37]. The logistic sigmoid function, with
its deep roots in probability theory, has been a popular choice of activation function for neural
networks since the inception of the field [46], and is defined by

σ(x) =
1

1 + e−x
=

ex

ex + 1
. (Sigmoid activation function)

Observe that limx→−∞ σ(x) = 0 and limx→+∞ σ(x) = 1, and that its derivative is positive
over the entire real number line. This makes it a bounded, differentiable, monotonic function,
and is therefore suitable for mapping the weighted output of an artificial neuron in the domain
(−∞,∞) into the range (0, 1). This makes it especially suitable for the final layer in neural
networks intended for predicting binary 0/1-responses.

Although the sigmoid activation function has strong biological [46] and theoretical [8] under-
pinnings, it often suffers from the phenomenon of vanishing gradients for network architectures
consisting of three or more layers, which in turn severely inhibits training. As an alternative to
the sigmoid activation function, the rectified linear unit (ReLU) was introduced in a paper [20]
by Hahnloser et al. in year 2000. It is defined as

ReLU(x) = x+ = max(0, x). (ReLU activation function)

The ReLU activation function has become the dominant activation function for use in neural
networks in recent years [36, p. 438] as it has been empirically shown to adapt well to deeper
neural networks [17].
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Pooling

The last layer in a given CNN block is conventionally a downsampling operation, most often
referred to as a pooling layer. As with convolution, this operation has biological influences
as it is inspired by a model of the mammalian visual cortex [18, p. 966]. The reduction in
spatial resolution is considered to be one of the main reasons for why CNNs portray a high
degree of translational and rotational invariance [31]. As with moving convolution, pooling is
implemented by moving a receptive field of size greater than 1, typically 2×2, over the activations
and mapping these values into a lower dimensional space. There are several different ways to
define such a mapping, the two most common being max pooling and average pooling, which
respectively retrieve the maximum value and average value from the receptive field. The former
is exemplified in Figure 5.


1 8 5 0
8 11 5 4
8 17 10 11
9 12 10 7


Activations

Pool operation

=

[
11 5
17 11

]
Pooled output

max

Figure 5: Example of a max-pooling operation with a receptive field of size 2×2 and an identical
stride size. The receptive field is shown in orange and the respective pooled output is shown in
green.

As can be seen in Figure 5, using a receptive field and stride of size 2×2 will yield a downsampled
image with one quarter as many pixels as the original input.

Batch normalization

The reparametrization of earlier layers when training deep neural networks results in a distri-
butional change in the feature layer forwarded to the next layers. This forces all subsequent
layers to adapt to the new “distributional circumstances”, which in turn impedes the conver-
gence of the optimization. This phenomenon, referred to as internal covariate shift, was first
identified in a paper [28] by Ioffe and Szegedy (2015) where they propose a method called batch
normalization in order to counter this phenomenon. Suppose we have a layer activation a con-
sisting of d dimensions, i.e. a = (a(1), . . . , a(d)). First we standardize each feature dimension, k,
independently

â(k) =
a(k) − E

[
a(k)

]
√

Var
(
a(k)

)
+ ε

, (Batch standardization)

where E [·] and Var (·) are respectively sample means and sample variances over the current mini-
batch, and ε is added for numerical stability. The result of this standardization is a feature map
where all filters have mean 0 and variance 1 for every mini-batch. The internal covariate shift
has been practically eliminated as a result.

This type of normalization alone may not be optimal in all cases, though, and is best explained
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by constructing a somewhat contrived pathological example. Assume a set of pooled layer ac-
tivations a to be symmetrically distributed, and assume the subsequent convolution layer to
preserve this symmetry. After standardizing the output, 50% of the values are expected to be
negative, and all of these values will be truncated to 0 if ReLU is the activation function of
choice. This informational loss may be suboptimal for the given network layer and must be
accounted for. That is to say, E [a] = 0 and Var (a) may be an unsuitable domain for the given
activation function. For this reason, we introduce two additional trainable parameters for each
feature dimension, γ(k) and β(k), and apply a second normalization step

y(k) = γ(k)â(k) + β(k). (Trainable normalization)

The intent is to learn the values for the shift, β(k), and scaler, γ(k), which restores the represen-
tative power of the given layer after the batch standardization.

Dropout

Dropout is a regularization technique for neural networks intended to prevent “complex co-
adaption of feature detectors” [26]. In practice this is achieved by randomly omitting hidden
nodes from the neural network during each training step; effectively forcing hidden nodes to
become less interdependent. An alternative interpretation of the dropout procedure is that it is
a computationally efficient form of model averaging, each dropout permutation being a model
instance. This technique has been empirically shown to significantly increase the test performance
in several different settings.

Although originally intended for use in feedforward neural networks, dropout has been extensively
applied in CNN architectures as well [34]. Since there are no nodes to be omitted in fully
convolutional layers, the dropout procedure needs to be adapted in order to be applicable in a
CNN setting. One approach is to introduce a randomly located square mask (cutout) in the input
image [9]. Stochastic depth dropout randomly selects entire layers to be dropped, replacing them
with identity functions instead [27]. Dropout can also be integrated into max pooling layers,
ignoring values at random during the search for the maximum value in the receptive field [56].
This has become known as max-pooling dropout and is illustrated in Figure 6.


1 8 5 0
8 11 5 4
8 17 10 11
9 12 10 7

 =

[
11 5
17 11

]


1 8 5 0
8 11 5 4
8 1 10 11
9 12 10 7

 =

[
11 4
12 11

]
max

max

Dropout

Figure 6: An example application of max-pooling dropout using a receptive field and stride of
size 2× 2. A dropout probability of p = 0.25 has been used. Dropped values are shown as black
boxes.



1.3 Metrics, Losses, and Optimization 10 of 71

1.3 Metrics, Losses, and Optimization

Metrics and losses are of central importance when training and evaluating machine learning
models. Denote the parametrization of a given machine learning model, f̂ , as θ, the input features
as X, and the corresponding ground truth labels as Y . In order to evaluate the performance of a
given model parametrization, we must formulate a cost- or performance-metric, P (f̂(X; θ);Y ),
which we intend to respectively minimize or maximize. The performance metric encodes our
notion of what constitutes as a good model fit.

While the performance metric is what we really want to optimize, it may not be suitable for nu-
merical optimization, for example due to being non-differentiable or too computationally costly.
Machine learning optimization differs from classical optimization in that the performance met-
ric is indirectly maximized through the optimization of a surrogate loss function [19, p. 272],
L(f̂(X;θ);Y ). The loss metric is minimized in the hope of improving the performance metric
indirectly, and it is therefore of vital importance that there is a strong relationship between
performing well on the loss function and performing well on the performance metric.

We will provide a summary of popular losses and metrics for single-class semantic segmentation.

Accuracy, sensitivity, and specificity

In order to describe segmentation metrics, it is useful to define the following quantities:

Condition Positive (P): Number of object class pixels in ground truth mask.

Condition Negative (N): Number of non-object class pixels in ground truth mask.

True Positive (TP): Number of pixels correctly predicted as being part of object
class (correctly identified).

True Negative (TN): Number of pixels correctly predicted as not being part of ob-
ject class (correctly rejected).

False Positive (FP): Number of pixel incorrectly predicted as being part of object
class (incorrectly identified).

False Negative (FN): Number of pixel incorrectly predicted as not being part of
object class (incorrectly rejected).

False positives (FP) are often knows as type I errors in statistics, and false negatives (FN) as
Type II errors. The greater the values of TP and TN, the better, and the smaller the values of
FP and FN, the better. A visual representation of these classifications is given in Figure 7.

The simplest metric for semantic segmentation is the pixel accuracy metric. This metric simply
reports the percentage of pixels that were correctly classified. More formally, it can be defined
as:

accuracy =
TP + TN

TP + TN + FP + FN
=
TP + TN

P +N
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Ground Truth Predicted Mask TP TN FP FN

Figure 7: Binary segmentation problem of size 256×256. The ground truth, a rectangle of size
120×80 is shown on the left. The “predicted” mask, shown in the middle, is of the same size, but
offset by (−30,−30). The right figure shows the visual equivalent of a confusion matrix. True
positives are shown in dark blue, true negatives in light gray, false positives in green, and false
negatives in red.

The problem with the pixel-wise accuracy metric is that it does not take class imbalances into
account. Consider a problem where 95% of all pixels are considered to be of class 0, and the
remaining 5% of class 1. If we construct a model which predicts 0 regardless of the feature
inputs provided to the model, the model will achieve a 95% accuracy score. This makes pixel-
wise accuracy scores hard to interpret when you do not know the class balance of the respective
dataset and the accuracy grouped by class. This is why it is often replaced by other metrics
which take imbalances into account. A pair of such metrics are sensitivity and specificity, formally
defined as:

sensitivity =
number of true positives

number of true positives + number of false negatives
=

TP

TP + FN
=
TP

P

specificity =
number of true negatives

number of true negatives + number of false positives
=

TN

TN + FP
=
TN

N

The sensitivity is therefore a measure of how good a given model prediction is able to identify
positives as a relative, fractional value. Likewise, the specificity is a measure of how good a given
model prediction is able to identify negatives.

Intersection over union and dice coefficient

Although the sensitivity and specificity metrics address the issue of class imbalances, they are
still two distinct metrics that need to be simultaneously inspected in order to get a full overview
of the model performance. Is it possible to construct a single scalar metric which incorporates the
ideas of both sensitivity and specificity? The intersection over union (IoU) and dice coefficient
(F1) are two metrics which try to do exactly this.

The IoU metric, also known as the Jaccard index, is defined as the area of the intersection between
the predicted segmentation mask and the ground truth mask divided by the union of these two
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masks, or more formally,

IoU =
|prediction ∩ truth|
|prediction ∪ truth| =

TP

TP + FP + FN
.

In the case of multiple classes IoU is calculated for each class independently and the result is
averaged, known as mean intersection over union (MIoU). MIoU is the most commonly used seg-
mentation metric in research and competitions due to its simplicity and representativeness [11].
Notice how the IoU metric is bounded between 0 and 1; IoU = 0 represents a complete “predic-
tive miss”, while IoU = 1 represents a prediction in perfect accordance with the ground truth. A
visualization of this metric is given in Figure 8 below.

IoU =

Intersection

ov
er

Union

Figure 8: Visualization of single-class IoU metric.

An alternative metric is the dice coefficient, also known as the F1 score. The dice coefficient is
defined by taking twice the area of the intersection and dividing by the sum of the areas of the
two masks:

F1 =
2 · |prediction ∩ truth|
|prediction|+ |truth| =

2 · TP

2 · TP + FP + FN
.

Again we observe that this metric is bounded to the interval [0, 1], with the same interpretation
of the endpoints 0 and 1 as with the IoU metric. The visual representation of this metric is given
in Figure 9.

F1 =

2×Intersection

2× ov
er

Sum of areas

+

Figure 9: Visualization of the single-class dice coefficient metric, also known as the F1 score.

You may have noticed that these two metrics are quite similar; they involve the same quantities,
only weighted differently, and map into the same interval. In fact, we can construct an exact
relationship between these two metrics1

IoU

F1
=

1

2
+

IoU

2
.

1The following relationship and the ensuing inequality bounds were noted by the Cross Validated Stack Ex-
change user “Willem” here: https://stats.stackexchange.com/a/276144.
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By inspection the two metrics must always be positively correlated, that is, as one metric increases
or decreases, the other must follow suit. A useful insight for understanding how these two metrics
actually differ is to observe how the IoU metric is bounded by the dice coefficient:

F1

2
≤ IoU ≤ F1.

The IoU is always less than or equal to the dice coefficient, but never smaller than half the
value. The fraction IoU/F1 is equal to 1 whenever the prediction coincides with the ground
truth and is equal to 1/2 whenever there is no overlap at all. By drawing an analogy to the p = 1
(absolute/Manhattan) norm and p = 2 (Euclidean) norm, we can say that the IoU metric weighs
the worst case of a prediction more than the average case, and vice versa for the F1 metric.

Binary cross-entropy and soft losses

So far we have only discussed metrics which are discrete, non-differentiable functions, thus making
them unsuitable for direct optimization. As discussed earlier, we need to introduce a differentiable
surrogate loss function which can be optimized. The key “trick” is to define a loss function over the
continuous probability domain before it is discretized to the classification domain by thresholding.
In order to formulate proper loss functions, we will start by establishing some notation. Denote
the ground truth binary classification mask as Y ∈ BH×W and the corresponding features as
X ∈ RH×W×C . Assume a model f̂ parametrized according to θ which provides a probability
estimate for Y , the probability estimate denoted as P = f̂(X;θ) ∈ [0, 1]H×W . For notational
convenience we will use a linear index in order to denote single matrix elements, for instance
Pi ∈ [0, 1] for i = 1, . . . ,HW .

The most common loss function for binary classification tasks is the binary cross entropy (BCE)
loss function defined as

LBCE(P ;Y ) = −
HW∑
i=1

Yi log (Pi) + (1− Yi) log (1− Pi). (1)

However, there are several issues with using the BCE as the loss function for segmentation tasks.
Firstly, it does not take class imbalances into account. The weighted binary cross entropy (wBCE)
is one attempt at accounting for class imbalances, but weighting is highly task-dependent and
has been shown to have negligible performance improvement over BCE [4, p. 98]. Another issue
with BCE and wBCE is that they are poor surrogates for the segmentation metrics introduced
in the previous subsection. The solution is to introduce differentiable approximations of these
discrete segmentation metrics. Such an approximation for the IoU metric is the soft Jaccard loss
also known as the Jaccard distance [7], defined by

LSJL(P ;Y ) = 1−

HW∑
i=1

PiYi

HW∑
i=1

(Pi + Yi − PiYi)
≈ 1− IoU (2)

Notice that if Pi is restricted to only take values in {0, 1} then LSJL becomes equal to 1− IoU.
Other variants exists, and it is also common to add a smoothing factor by adding a value δ to
both the numerator and denominator and multiplying the entire loss with the same value. A
similar differentiable approximation of the dice coefficient, called soft dice loss, has also been
derived [41].
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LSDL(P ;Y ) =

2
HW∑
i=1

PiYi

HW∑
i=1

P 2
i +

HW∑
i=1

Y 2
i

≈ 1− F1 (3)

Optimizing these two metric-sensitive losses have been shown theoretically and empirically to
indirectly maximize their respective surrogate metrics [4]. You would think that if the dice
coefficient has been chosen as the metric of interest for a given problem, the soft dice loss should
be used instead of soft Jaccard loss. However, Bertels et al. have shown [4] that these two metric-
sensitive losses are equally good surrogates for each others metrics, and the choice is therefore
mainly a preferential one.

Optimization

So far we have only mentioned that we must define a loss function to be optimized for a given
neural network, but we have not mentioned exactly how this optimization is performed. Deep
learning optimization is a huge field of research, and for the sake of brevity we will glance over
a lot of detail and focus on the techniques applied in our models presented in Section 3.

For supervised machine learning we start with a labeled data set, D, containing n observations:

D = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)}

This data set is then partitioned into three disjunctive subsets, referred to as the training,
validation, and test splits.

Dtrain ∪ Dvalidation ∪ Dtest = D
Di ∩ Dj = ∅, for i 6= j

A common method is to shuffle the data and then allocate 70% of the original data as training
data and 15% for the two remaining splits. Now, as the name implies, the training split Dtrain is
used for training the neural network, one of the simplest optimization algorithms being iterated
gradient descent. At training step s the network parametrization θ is updated according to

θ(s+1) = θ(s) − α∇θ
∑

Xi,Yi∈Dtrain

L(f̂(Xi;θ
(s));Yi),

where α is the learning rate. Efficient calculation of the gradient ∇θ for nonlinear networks
of arbitrary connectivity is enabled by a method called backpropagation [49]. For each training
step, the input data is passed forward through the neural network in order to calculate new
predictions. Errors are then subsequently propagated backwards through the network in order
to efficiently calculate the partial derivatives of the loss function with respect to each parameter
θi. The initial parametrization, θ(0), is not simply filled with zeroes or random values as that
can cause certain problems. We will initialize the weights with the He normal method devised
by He et al. which draws values from a truncated normal distribution. More details can be found
in the original paper [23].

A common modification to this scheme is the so-calledmini-batch gradient descent algorithm [48].
The training set is yet again partitioned into even smaller splits called batches, and during training
gradient descent is applied iteratively over each batch. After each epoch, when all batches have
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been evaluated, the training split is shuffled and a new batch partition is formed. For sufficiently
large batch sizes the feature distribution of each batch can be considered a good approximation
of the entire sample space, while still having decreased the computational cost of each training
step.

The validation split is used for hyperparameter tuning such as the selection of the number of
training epochs by early stopping [5]. After each epoch, a given validation loss or metric is
evaluated over the validation split. As soon as the validation split has not improved for a given
number of epochs, referred to as the early stopping patience, the training is stopped and model
parametrization corresponding to the best validation metric is chosen as the final model. Early
stopping is intended to prevent overfitting the model on the training data by using the validation
metric as an indication of generalizability. The test split, in contrast to the training and validation
splits, is completely isolated from the model training procedure, and is solely kept for a final
evaluation of the trained model.

The Adam optimizer published in 2015 [32] has become a popular gradient-based optimization
algorithm for machine learning problems. The algorithm has relatively low computational and
memory requirements, copes well with large data sets and parameter spaces, and is relatively
well-behaved when faced with noisy and sparse gradients. This is the optimization algorithm we
will use for our model training experiments, the results being presented in Section 3.

1.4 State-of-the-Art

At the time of this writing, CNNs have largely surpassed all previous methods for performing
image segmentation [11], but it is still a relatively new field with constantly new improvements
being made. In the following section we will provide an overview of the current state-of-the-art
methods being applied within this field, focusing on the unique aspects of each approach. Four
CNN architectures are considered especially influential as they have become essential building
blocks for many segmentation architectures; AlexNet, VGG-16, GoogLeNet, and ResNet [11].
Note that these architectures were initially intended for classification and localization tasks only,
but their conceptual ideas are important for segmentation architectures as well.

AlexNet [33] won several image classification competitions when it was first published in 2012,
including the ILSVRC-2012 competition [11]. By employing five convolutional layers, max-
pooling layers, ReLU activation functions, and dropout, followed up by a fully connected feed-
forward classification network, it outperformed the 2nd place contender by a relatively large
margin.

The VGG-16 architecture [51] published in 2014 introduced the idea of stacking several convo-
lution filters with small receptive fields in early layers. VGG-16 distinguishes itself by stacking
several convolutional layers with small receptive fields in the first layers instead of using few
convolutional layers with large receptive fields. The result is a network with fewer parameters
and more applications of the non-linear activation functions leading to an increased ability to
discriminate inputs and reduced training times. VGG-16 achieved an impressive 92.7% TOP-5
test accuracy in the ILSVRC-2013 classification competition, inspiring further research involving
the techniques employed by the architecture [11].

Substantially deep networks are prone to overfitting and are subject to additional computational
overhead. The GoogLeNet architecture [54] from 2014 introduced the inception module in
order to combat this problem, a building block which allow networks to grow in depth and width
with modest increases in computational overhead. The inception module discards the usual
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approach of ordering convolutions in a sequential manner, instead opting for several parallel
pooled convolution branches with different dimensional properties. Finally a 1×1 convolution is
applied to each branch in order to reduce the dimensionality of the output and the concatenated
result is passed onto the next layer.

The ResNet architecture [22] from 2016 was the result of a continued effort to make deeper
architectures feasible. By training a model with 152 layers ResNet won the ILSVRC-2016 com-
petition with a remarkable 96.4% accuracy [11]. This depth is achieved by introducing skip
connections between layers, an effective way to combat vanishing gradients.

The success of convolutional architectures for classification tasks were eventually adapted for
segmentation tasks as well. A fully convolutional, pixel-to-pixel classification network was first
published by Long, Shelhamer, and Darrell in 2015 [39]. AlexNet, VGG-16, and GoogLeNet
were successfully adapted in order to achieve state-of-the-art performance on the PASCAL-VOC
segmentation dataset.

Fully convolutional neural networks (FCNN) quickly became the dominant technique used in
segmentation challenges after the success in classification and localization challenges. The U-
Net architecture, originally published in 2015 and intended for biomedical image segmentation,
has become one of the more popular segmentation architectures. U-Net has an encoder/decoder -
structure; the network starts with a contracting path where context is extracted from the input
image. This is followed by a symmetric expanding path in order to upscale the segmentation to
the original resolution by the use of transposed convolution, a trainable procedure also known
as deconvolution. Skip-connections are introduced in order to forward information from the
contracting layers to the respective expanding layers. SegNet [3], an architecture from the same
time period, has a similar encoder/decoder structure as U-Net. The difference between the two
architectures is that SegNet only copies over the max-pool indices in the skip connections instead
of forwarding the entire feature layer, thus decreasing the memory requirements of the network.

R-CNN [16], and the subsequent improvements Fast R-CNN [15] and Faster R-CNN [44],
made great strides in image classification and localization tasks in 2014 and 2015. The crux of
their success lies in the region proposal network (RPN), a parallel network which is responsible for
identifying regions of interest (RoIs) in the convolved feature maps. These RoIs are transformed
to consistent dimensions by a custom pooling method called RoIPool, or alternatively RoIWarp,
and subsequently classified and localized with a fully connected feedforward network. Mask
R-CNN [24], published by the Facebook AI research group in 2017, sought to expand Faster
R-CNN in order to predict segmentation as well. Mask R-CNN replaces RoIPool with RoIAlign,
a region of interest pooling method which preserves a one-to-one pixel mapping between the
original feature map and the extracted region of interest. The output of the pooling operation
is forwarded to a parallel FCNN branch in order to perform pixel-wise segmentation. This
segmentation branch predicts independent masks without inter-class competition, and reuses the
work performed by the classification branch in order to select which mask to apply to a given
region.

Capsule networks has become a topic of large interest in the research community as of late.
First introduced in a paper [50] by Sabour, Frosst, and Hinton, it has since been applied to
segmentation tasks as well. One such adaption is the SegCaps architecture [35]. The main idea
behind capsule networks is to output more data from each neuron, effectively allowing the network
to make more informed decisions with this new context. Instead of only storing a single scalar in
each neuron they store a contextual vector instead. Each vector encodes information about the
spatial orientation, magnitude, prevalence, and other attributes related to the extracted features.
These capsule vectors are dynamically routed to the capsules in the next layer based on vector
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similarity.

1.5 Model Architecture

We have chosen the U-Net architecture for segmenting building outlines and we will present
numerical experiments in Section 3. The U-Net model has already been briefly described in the
previous section and the architecture has been illustrated in Figure 3, but we will provide a more
detailed summary of the U-Net architecture here. An alternative visual representation of the
U-Net architecture is provided in Figure 10.
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Figure 10: U-Net model architecture. The vertical axis denotes the resolution of the features,
resulting in the U-shape of U-Net. Figure has been generated by modifying a tikz example
provided in the MIT licenced PlotNeuralNet library available at this URL: https://github.
com/HarisIqbal88/PlotNeuralNet.

As can be seen in Figure 10, the U-Net architecture consists of four sequential “encoder modules”,
each module applying a set number of convolutional filters followed by the application of the
ReLU activation function. The number of trained convolutional filters in each encoder module
is respectively: 64, 128, 256, and 512. Each module ends with a downsampling operation in
form of max-pooling of size 2. Since our input images have resolution 256 × 256, we end up
with inputs of size 16 × 16 to the “bottleneck convolution module” where 1024 convolutional
filters are trained. The bottleneck convolution module is placed at the bottom of the U-shape
in Figure 10. Each decoder block utilizes batch normalization and max-pooling dropout, although
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models without these building blocks will be tested in Section 3.3. The “decoder modules” apply
transposed convolutions in order to upsample the resolution by a factor of two, the number of
filters being equivalent to their respective “mirror encoders”, i.e. the encoder modules handling
inputs with identical resolutions. Four such modules are applied in order to yield a final output
resolution of size 256 × 256, the original input resolution. The outputs of the mirror encoder
modules are concatenated to the input to the decoder modules in order to aid the upsampling
procedure. Finally, a sigmoid convolution with filter size 1 is applied in order to produce the final
segmentation probabilities. This model has been implemented using the declarative Keras API
in Tensorflow v2.0 and the source code is available at the JakobGM/project-thesis repository
on GitHub2. The final network has 7 025 329 trainable parameters.

2All source code used in order to produce and present the results in this paper are available from the following
public GitHub repository: https://github.com/JakobGM/project-thesis. Specifically, the implementation of the
U-Net architecture has been made available here: https://github.com/JakobGM/project-thesis/blob/master/
remsen/models.py.
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2 Data

Geographic data is in wide use by both the public and private sector, and is a huge subject
in and of itself. The storage, processing, and inspection of such data is handled by Geographic
Information Systems (GIS). In this section we will explain a few core GIS concepts relevant for
the problem at hand, concepts which will inform decisions for how to prepare the data for machine
learning purposes. Section 2.1 will give a brief introduction to the coordinate systems used to
represent geographic data. GIS data can be largely bisected into two categories, vector data and
raster data, and both types will be described in Section 2.2. Section 2.3 will present the data sets
used for training our models. The remaining subsections will describe the preprocessing pipeline
which has been developed for our specific purposes, preprocessing in the form of cadastral tiling
(Section 2.4), segmentation masking (Section 2.5), and raster normalization (Section 2.6). A
figurative overview of the preprocessing pipeline is provided by Figure 59 in Appendix A.1.

2.1 Coordinate Systems

One of the most common coordinate system for representing arbitrary positions on earth’s surface
is the geographic coordinate system (GPS). A given point, p = (φ, λ, z), is represented by an
angular latitude and longitude, φ and λ respectively, and a radial distance from the mean sea
level, z. A negative value for z does not necessarily imply that the given point is below ground,
as certain areas (such as in the Netherlands) are situated below sea level. It is therefore not
sufficient to represent elevation data with unsigned floating point numbers.

Although GPS is able to uniquely represent arbitrary geographic points with a high degree of
accuracy, it is still unsuitable for many applications. Cartesian transformations and distance
norms are cumbersome to calculate, and data structures and visualizations which are fundamen-
tally two dimensional in nature, such as maps, rasters, and matrices, are difficult to construct
from spherical coordinates while protecting important properties of the data.

Figure 11:
The figure shows the UTM zones
required in order to cover the en-
tirety of Europe, from 29S to 38W.
This public domain image has been
sourced from Wikimedia [6].

In order to solve this problem we define a set of coordinate
system projections which approximate predefined regions
of the earth’s surface as flat planes. The resulting coordi-
nate systems are Cartesian and thus allow us to represent
geographic points in the more common p = (x, y, z) for-
mat. Cartesian distance norms such as ||p1 − p2||2 and
Cartesian translations p1 + p2 stay within predefined er-
ror tolerances as long as operations are contained to the
validity region of the given projection.

One such Cartesian approximation of the earth’s surface is
the Universal Transverse Mercator (UTM) coordinate sys-
tem which divides the earth into 60 rectangular zones [52,
p. 48]. The UTM zones covering Europe are shown in Fig-
ure 11. We will exclusively use UTM zone 32V for our
datasets covering the municipality of Trondheim situated
in the southern part of Norway. Data provided in alter-
native coordinate systems will be mapped to this UTM
zone before we start using the data. Since this is an affine
coordinate system, we can easily generalize any models
to other coordinate systems by applying the correct affine



2.2 Data types 20 of 71

transformations. Technical details for how to map between different coordinate systems are given
in Appendix A.2 for reproducibility.

2.2 Data types

We will provide a brief overview of the two main categories of GIS data, namely vector data and
raster data, and how to prepare these data types for machine learning purposes.

Vector data

A line string is an ordered collection of geographic points (p0, . . . ,pn) defining a path which
connects each consecutive point by a straight line. The points are therefore necessarily order
dependent. A simple line string is a path which does not intersect itself, while a complex line
string is one that does. When the first and last points of a line string are identical it is considered
a linear ring, i.e. l = (p0, . . . ,pn,p0). A polygon can therefore be represented by a simple linear
ring which defines its exterior hull and any number of simple linear strings which defines its
interior hulls. Figure 12 illustrates these concepts for polygons with and without interior hulls.

p0 = (x0, y0)

p1 = (x1, y1)

p2 = (x2, y2)

p3 = (x3, y3)

p0,0 p0,1

p0,2p0,3

p1,0 p1,4

p1,3
p1,2

p1,1

Figure 12: Simple polygon with four unique vertices is shown on the left hand side. A complex
polygon with an outer hull and an interior hull is shown on the right hand side for comparison.

A polygon is considered invalid if one or more of its linear rings are self-intersecting, i.e. if any
of its rings is considered to be complex. Data providers frequently provide polygons in invalid
states and such polygons must be corrected since they are often not processable by common GIS
tools. Zero-buffering invalid polygons (growing the polygon in all directions by zero units) fixes
such problems, as can be seen in Figure 13.

p0

p1

p2

p3

buffer(0.0)

p0

p1

p2

p3

p4

p5

Figure 13: Illustration of how zero-buffering an invalid polygon corrects self-intersecting poly-
gons.

Zero-buffering polygons has the added benefit of normalizing vector data by re-ordering the poly-
gon vertices in an anti-clockwise manner and removing redundant vertices as shown in Figure 14.
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p0 p1 p2
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p0 p1
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Figure 14: Illustration of how zero-buffering polygons removes redundant vertices.

This allows you to apply simpler similarity measures for comparing polygons, and reduces com-
putational costs when processing the polygons. Technical details for applying zero-buffers to
vector data is provided in Appendix A.3. We will come back to how to combine vector and
raster datasets by rasterization in Section 2.5 where it will also become clear why the removal
of redundant vertices is of importance.

Raster data

Raster data consists of a set of scalar measurements imposed onto a grid. A color image, I, of
width W and height H, will contain three color channels; red, green, and blue (RGB), and can
be represented by a three-dimensional array of size H ×W × 3. Each color channel for a given
pixel is represented by an unsigned 8-bit integer, i.e.

Ii,j,c ∈ {0, 1, . . . , 255}, i = 1, . . . ,H, j = 1, . . . ,W, c = 1, 2, 3.

A LiDAR elevation map, which we will denote as Z, is likewise encoded as a single-channel
grayscale image of size W ×H. Each pixel is represented by a signed 32-bit floating point value
which gives the following approximate value domain

Zi,j ∈ R, i = 0, . . . ,H− 1, j = 0, . . . ,W − 1.

These two raster types must be handled differently during data standardization/normalization
due to their different value domains, which we will come back to in Section 2.6.
For GIS rasters specifically we must additionally provide the spatial extent of the given raster
defined by:

• A coordinate system, for example UTM 32V.
• The coordinate of the center of the upper left pixel, I1,1; the origin r0 = [x0, y0]

T .
• The pixel step size, ∆ = [∆x,∆y]

T , for example [0.25 m,−0.25 m]
T .

The pixel Ii,j,c therefore represents a rectangle of width ∆x and height ∆y centered at the spatial
coordinate r0 + ∆ · [i, j] interpreted in the given coordinate system.

Missing data in remote sensing rasters is specified by filling in a predefined nodata placeholder
value. For RGB data this is often set to 0, resulting in a black pixel. LiDAR rasters often
use nodata = −2127 × (2 − 2−23) ≈ −3.4028234664 × 1038, the most negative normal number
representable by a single-precision floating point number. Such nodata values may arise from
measurement errors or by pixels situated outside the given coverage area of the dataset, and
must be special-cased during data normalization, which we will come back to in Section 2.6.
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When we will train models on the combination of LiDAR and aerial photography data, these two
types of rasters must be merged in order to attain a consistent three-dimensional array of size
H ×W × 4. These rasters can not be simply superposed when their pixel sizes ∆ and/or origins
r0 differ. In such cases we will apply bilinear interpolation on the raster of greatest resolution
and subsequently downsample it in order to align all pixels. See Appendix A.4 for how this is
performed in practice.

2.3 Data sets

The modelling results presented in Section 3 are trained on GIS data covering the Norwegian
municipality of Trondheim. All data sets have been made available by the “Norge digitalt”-
partnership and have been downloaded from https://geonorge.no, an online service hosted
by Norwegian Mapping and Cadastre Authority (Statens Kartverk). All data, unless otherwise
stated, are licenced under the “Norge digitalt”-licence3 which restricts the use to non-commercial
purposes.

Raster data sets

We will use the “Ortofoto Trondheim 2017”4 aerial photography data set from 2017 which requires
161 GB of storage space. The real image resolution is 0.04 m – 0.15 m, but is provided with an
upsampled resolution of 0.1 m for consistency. The reported accuracy is ±0.35 m [29], although
the exact type of this accuracy is not specified. An exemplified region is visualized in Figure 15.

Figure 15: Visualization of “Ortofoto Trondheim 2017” aerial photography data set.
©Kartverket.

An orthophoto is an image where the geographic scale is uniform over the entire image. Proper
orthophotos are expensive to manufacture and are therefore seldomly available for most geo-
graphic regions [30], including Trondheim. Aerial photography which has not been properly

3Information regarding the “Norge digitalt”-licence can be found here:
https://www.geonorge.no/Geodataarbeid/Norge-digitalt/Avtaler-og-maler/Norge-digitalt-lisens/.

4Product specification for “Ortofoto Trondheim 2017” can be found here:
https://kartkatalog.geonorge.no/metadata/cd105955-6507-416f-86d2-6d95c1b74278.
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“ortho-rectified” may impede location-based inference as there exists no exact one-to-one map-
ping between image pixels and geographic coordinates. This problem is best understood by an
example, as shown in Figure 16.

Figure 16: Example of nonproper orthophoto. The building centered in the image is 14 stories
tall. The orange area annotates a clearly visible building wall. ©Kartverket.

As can be seen in Figure 16, the “Ortofoto Trondheim 2017” data set clearly shows one side of
a building due to the perspective of the plane capturing the image. An ideal orthophoto would
capture all vertical building walls as single, straight lines, no matter the perspective. The effect
of this “parallax error” on segmentation predictions will be investigated in Section 3.2.

The LiDAR data set used is “Høydedata Trondheim 5pkt 2017”5 from 2017-10-10 and requires
25 GB of storage space. The resolution is 0.2 m and has a reported standard deviation of
0.02 m [2]. LiDAR visualized as a grayscale image over the same region as in Figure 15 is
presented in Figure 17.

Figure 17: Visualization of “Høydedata Trondheim 5pkt 2017” LiDAR data set. ©Kartverket.

5Product specification for “Høydedata Trondheim 5pkt 2017” can be found here:
https://kartkatalog.geonorge.no/metadata/bec4616f-9a62-4ecc-95b0-c0a4c29401dc.
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The LiDAR dataset is partially incomplete due to measurement errors, and certain pixels are
therefore filled in with nodata placeholder values as explained in Section 2.2. Table 1 shows
the frequency of such nodata values in the data set. The table has been produced by moving a
rolling window of size 10 m × 10 m over the entire coverage area and calculating the proportion
of pixels with valid values within each non-overlapping window.

Point density (m−2) Proportion (%)

> 100% 97.7
85 % – 100 % 1.2
60 % – 85 % 1.1

Table 1: Control of point cloud density of the Trondheim 2017 LiDAR data set. The densities
are calculated within rolling windows of size 10 m× 10 m [2].

Vector data sets

The “Matrikkelen - Eiendomskart Teig”6 data set contains all cadastral plots in Trondheim,
the use of which will be explained in Section 2.4. The “FKB-bygning”7 data set contains all
registered building outlines in Trondheim. The building outlines will be used to construct binary
classification masks as outlined in Section 2.5. Both data sets are illustrated in Figure 18.

Figure 18: Illustration of vector data sets. Cadastral plots are shown on the left while building
outlines are shown on the right. ©Kartverket.

2.4 Tiling Algorithm

The data sets provided to us are in a state unsuitable for direct use by machine learning frame-
works. For this reason we need to develop a preprocessing pipeline that transforms the data

6Product specification for “Matrikkelen - Eiendomskart Teig” can be found here:
https://kartkatalog.geonorge.no/metadata/74340c24-1c8a-4454-b813-bfe498e80f16.

7Product specification for “FKB-bygning” can be found here:
https://kartkatalog.geonorge.no/metadata/8b4304ea-4fb0-479c-a24d-fa225e2c6e97.
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into a more customary format. The data preprocessing should be generalizable to different re-
gions, data formats, data types (vector vs. raster), coordinate systems, and so on. The goal is
to implement a modelling pipeline that can be applied to other geographic regions in the future.

Our data sets are defined over a single, contiguous geographic area, and we must therefore define
a sample space which allows us to split the data into training-, validation-, and test-sets. The
collection of all cadastral plots in a given region is a suitable sample space since cadastral plots
are non-overlapping regions of relatively small size and have a high probability of containing one
or more buildings. A large raster dataset covering a sparsely populated region can therefore be
substantially reduced in size before training. An alternative approach is to split the entire data
set into regularly sized tiles and use this tile collection as the sample space. A tiled sample space,
for anything other than densely populated areas, will suffer from class imbalances due to low
building densities in most tiles.

Given a specific geographic region, defined by the extent of the cadastral plot, we must retrieve
the raster which covers the region of interest. The simplest approach is to calculate the axis-
aligned bounding box of the plot, the minimum-area enclosing rectangle of the given plot. A
bounding box is uniquely defined by its centroid c = [1/2(xmin + xmax), 1/2(ymin + ymax)], width
w = xmax−xmin, and height h = ymax− ymin, and we will denote it by B(c, w, h). This is shown
in Figure 19a.

(xmin, ymax)

(xmax, ymin)

w = xmax − xmin

h
=
y
m
a
x −

y
m
in

CADASTRAL

(a) Bounding box calculation for a given
cadastral. The cadastral is shown in orange,
and the resulting bounding box is annotated
with blue dashed lines.

φ

(xmin, ymax)

(xmax, ymin)

(b) Figure showing the difference between a
regular bounding box shown in blue, and a
minimum rotated rectangle shown in red. An-
gle of rectangle rotation denoted by φ.

Figure 19: Comparison of bounding box methods.

The edges of the bounding box is by definition oriented parallel to the coordinate axes. An
alternative method is to calculate the arbitrarily oriented minimum bounding box (AOMBB), a
rectangle rotated by φ degrees w.r.t. the x-axis, as shown in Figure 19b.

While AOMBB yields regions with less superfluous raster data, it requires warping of the original
raw raster whenever φ is not a multiple of 90°, i.e. φ 6∈ {0°, 90°, 180°, 270°}. Such warping requires
data interpolation of the original raster data due to the rotation of the coordinate system, and
may introduce artifacts to the warped raster without careful parameter tuning. AOMBB is
therefore not a viable approach during the preprocessing stage, and we will therefore use axis-
aligned minimum bounding boxes instead, from now on simply referred to as bounding boxes.
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Calculating bounding boxes for the cadastral plots in our data sets will yield rectangles of variable
dimensions. Variable input sizes will cause issues for model architectures which require predefined
input dimensions. Convolutional neural networks do handle variable input sizes, but dimensions
off all images in a single training batch must be of the same size. It is therefore preferable to
normalize the size of each bounding box.

The distributions of the bounding box widths (w), heights (h), and maximal dimensions (m =
max{w, h}) are shown in Figure 20.
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Figure 20: Distribution of bounding box widths w (left), heights h (middle), and largest
dimension m = max{w, h} (right). The cut-off value of 64 m is shown by red dotted vertical
lines. The fraction of bounding boxes with dimension ≤ 64 m is annotated as well. The x-axis
has been cut off at the 90th percentile. Dataset: Trondheim cadastre.

As can be seen in Figure 20, the distributions of h and w are quite similar, as expected. A
square 1 : 1 aspect ratio is therefore suitable for the normalized bounding box size. Specifically,
a 64 m × 64 m bounding box will be of sufficient size to contain ≈ 85 % of all cadastre plots
in a single tile. With a LiDAR resolution of 0.2 m, this results in a final image resolution of
256 px× 256 px. This resolution has the added benefit of being a common resolution for CNNs.

How should the bounding boxes be normalized to to 256 px× 256 px? A common technique is to
resize the original image by use of methods such as bilinear interpolation or Lanczos resampling.
While this is tolerable for normal photographs, where each pixel has a variable surface area
mapping, it is an especially lossy transformation for remote sensing data. In the Trondheim
2017 LiDAR data set, for instance, each pixel represents a 0.2 m× 0.2 m real world area. If the
highly variable extent of each bounding box is scaled to 256 px × 256 px, the real world area of
each pixel will differ greatly between cadastral plots. Resized images will also become distorted
whenever the original aspect ratio is not 1 : 1.

A better method utilizes the fact that the remote sensing data covers a continuous geographic
region, which allows us to expand the feature space beyond the original region of interest. The
original bounding box is denoted as B(c, w, h). Now, define the following “enlarged” width and
height:

h∗ :=

⌈
h

64 m

⌉
· 64 m, w∗ :=

⌈
w

64 m

⌉
· 64 m

The new bounding box, B(c, w∗, h∗), covers the original bounding box and is divisible by 256 px
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in both dimensions. In other words, the original bounding box is grown in all directions until
both the width and height are multiples of 64 m (256 px). This is demonstrated in Figure 21.

64 m

256 px

64 m
256 px

h∗

w∗

Figure 21: Bounding box of width 2.25 · 64 m = 144 m and height 1.25 · 64 m = 80 m. The
bounding box is grown until it is 3 tiles wide and 2 tiles tall, i.e. 192 m× 128 m.

The resulting bounding box can now be divided into w∗h∗/642 tiled images of resolution 256 px×
256 px, every pixel representing a 0.2 m×0.2 m surface area, and no spatial information has been
lost in the process. Each tile’s geographic extent is uniquely defined by the coordinate of the
upper left corner (tile origin), since the tile dimensions are identical. An affine transformation
from the UTM zone into the tile’s discretized coordinate system can be constructed from the tile
origin.

The additional area, B(c, w, h) \B(c, w∗, h∗), is filled with real raster data and respective target
masks, and therefore may cause expanded bounding boxes to partially overlap. This will result
in certain cadastral plots to share features, and must therefore be carefully dealt with in order
to prevent data leakage across training, validation, and test splits. Another approach is to fill
in the additional area with zero-values, effectively preventing all data leakage between cadastral
plots. A disadvantage with this approach is that all models are now required to learn to ignore
this additional, fake data, and this could result in reduced predictive performance and/or longer
training times.

2.5 Masking Algorithm

In order to create a ground truth segmentation mask we must convert the vector-formatted mask
polygons, building outlines in our case, into the same rasterized format as the remote sensing
data. The construction of discretized segmentation masks from vectorized mask polygons is
performed by Algorithm 1.
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Algorithm 1: Discretized masking

1 Transform the mask polygons into the pixel coordinate system of the raster tile, using
the affine transformation defined by the tile origin.

2 Superimpose the polygon on the discretized pixel grid and crop polygons outside the
pixel region (0, 255)× (0, 255).

3 Fill in the value 1 for any pixel contained by the polygon exterior hulls, while not
contained by any interior hull.

4 Set remaining values to 0.

A problem arises when pixels are partially contained by a polygon exterior and interior, i.e.
when the pixel overlaps the polygon’s boundary. The pixel must be rather arbitrarily considered
as either contained (decision rule A) or not contained (decision rule B) by the polygon. Both
decision rules are shown in Figure 22.

Figure 22: The same polygon discretized to a raster grid using two different techniques. In
the left figure, all pixels being touched by the interior of the polygon are considered a part of
the polygon (decision rule A), while in the left figure, only pixels entirely contained within the
interior are considered being part of the polygon (decision rule B).

An alternative is to average the two masks, resulting in mask values of 0.5 where the two decision
rules disagree. Approximately 9.2 % of mask pixels of value 1 are situated along the boundary of
a discretized mask polygon (1.7 % of all pixels regardless of value) and may therefore be affected
by this decision. We have opted for decision rule A. The distribution of the mask class balance
across all produced tiles is shown in Figure 23.
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Figure 23: Distribution of building density across all produced tiles in Trondheim. Building
density is defined by number of pixels positioned on top of buildings divided by total number of
pixels.

The average tile has a building density of approximately 17 %, that is 700 m2 of 4096 m2 is
occupied by buildings. Of all the produced tiles approximately 8.32 % end up having no positive
mask pixels, i.e. no buildings are situated within these tiles.

2.6 Raster Normalization

Input data normalization has been found to be of vital importance when training neural networks,
in certain cases reducing predictive errors by several orders of magnitude and training times by
one order of magnitude [53]. How to normalize input data depends on distribution of the feature
space, which will be investigated here.

RGB rasters

A given RGB pixel is an unsigned 8-bit integer and therefore takes values in a bounded, integer
domain

Ii,j,c ∈ {0, 1, . . . , 255}, for c ∈ {r, g, b}.
The distribution of each color channel over the entire coverage area of the Trondheim aerial
photography data set is shown in Figure 24, and aggregate statistics for each channel are listed
in Table 2.
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Figure 24:
Distribution density for all three color channels in the
aerial photography data set covering Trondheim munici-
pality (2017).

Channel Mean [1] SD [1]

Red 101.6 55.0
Green 102.7 48.7
Blue 91.3 37.2

Table 2:
Aggregate statistics for each
image channel distribution
for the aerial photography
data set covering Trondheim
municipality (2017).

The image channels can be easily normalized to the domain [0, 1] by dividing by 255 across
all three image channels. This is in essence a lossless transformation, since the normalization
function f(x) = x/255 is trivially invertible, and thus no information is lost by this normalization.

LiDAR rasters

The “z channel” represents elevation data from the respective digital surface model. Eleva-
tion measurements are represented by 32-bit, single-precision floating point numbers, and can
theoretically take values in the domain Ii,j,z ∈ (−3.4× 1038 m, 3.4× 108 m). In practice, the
measurements are bounded by the regional extrema, (−433 m, 8848 m) for dry land globally, and
(−9 m, 569 m) for the Trondheim region. The distribution of z channel values for the Trondheim
region is shown in Figure 25, and aggregate statistics are listed in Table 3.

A normalization technique analogue to the RGB min-max scaling for elevation tile number k,
denoted as Z(k), would therefore be

Ẑ
(k)
i,j =

Z
(k)
i,j − min

t∈TRD
Z(t)

max
t∈TRD

Z(t) − min
t∈TRD

Z(t)
(Global min-max normalization)

=
Z

(k)
i,j + 9 m

578 m
,

where TRD is the index set of all tiles belonging to the Trondheim region. The normalized raster
elevation values in Ẑ(k) are guaranteed to be bounded to the interval [0, 1], as with the RGB
raster. In order to evaluate if this will properly normalize the z raster channel across tiles, we
plot the “tile-by-tile” z channel statistics in Figure 26.
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Figure 25: Distribution density for elevation data set
covering Trondheim municipality (2017). Outlier values
(0 m, 2.74 %) and (148 m, 1.93 %) have been cropped.

Channel Mean [m] SD [m]

Elevation 155.4 116.5

Table 3: Aggregate statis-
tics for elevation data set cov-
ering municipality of Trond-
heim (2017).
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Figure 26: Elevation value statistics for a tile subset of sample size n = 10 000. The left figure
shows the minimum, mean, and maximum elevation, sorted by increasing mean from left to right.
The right figure shows the histogram of the tile elevation ranges (difference between maximum
elevation and minimum elevation within tile).

While the global elevation range is 569 m − (−9 m) = 578 m, the elevation range within each
respective tile is on average approximately 22 m±8 m(SD), that is, much less than 578 m. Coupled
with the fact that the tile elevation means are somewhat uniformly distributed between 0 m and
200 m, ignoring the right tail, a global normalization will yield tile elevation values with small
standard deviations and highly variable means. We can therefore conclude that global min-max
scaling is not suitable for the elevation image channel. A proposed solution to this problem is
to scale each tile independently to the domain [0, 1], what we will refer to as “local min-max
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normalization”.

Ẑ
(k)
i,j =

Z
(k)
i,j −min Z(k)

max Z(k) −min Z(k)
(Local min-max normalization)

=
Z

(k)
i,j − β
α− β , where α := max Z(k), β := min Z(k).

The scaling factor α − β is constructed such that the normalized tile minimum becomes 0 and
maximum becomes 1 for all tiles.

Any elevation normalization method must account for the fact that missing data values are
replaced by a pre-defined nodata placeholder value, usually −3.4× 1038 m. Otherwise a large
negative bias is introduced for all tiles with any missing data. Leaving nodata values unnormal-
ized with such extreme values will heavily influence the weighted sum calculated by nodes in any
neural network, and must therefore filled in with values from the normalized domain. Filling
in 0 values for all nodata indices has been shown to work well in most cases. The “nodata-
aware” min-max normalization algorithm used for preprocessing elevation input data is given
in Algorithm 2.

Algorithm 2: Nodata-aware local min-max normalization

1 Calculate the valid index set defined by V = {(i, j) : Zi,j 6= nodata}.

2 Calculate α = max
(i,j)∈V

Zi,j and β = min
(i,j)∈V

Zi,j .

3 Construct normalized raster defined by

Ẑi,j =

{
Zi,j−β
α−β , if (i, j) ∈ V,

0, otherwise.

One of the core issues with local min-max normalization is that it is essentially a lossy operation.
As each tile is independently scaled, it is no way to accurately reconstruct the original elevation
map in metric units. One way to determine if a roof-like surface belongs to a proper building or a
shed, for instance, is to inspect its relative height, which becomes impossible without knowing the
relative scaling of each tile with respect to each other. We therefore hypothesize that the variable
scaling imposed by local min-max normalization could impede the performance of models trained
on such data. An alternative normalization method is therefore proposed where the scaling factor
α − β is replaced by a predefined constant scaler γ > 0. The translation β is kept as-is since
there is no reason to distinguish between cadastral plots situated at sea-level and other altitudes
when it comes to building outline detection. This “metric normalization” is therefore defined as:

Ẑ
(k)
i,j = f

(
Z

(k)
i,j

)
=
Z

(k)
i,j −min Z(k)

γ
, γ > 0. (Metric normalization)

Elevation values in the z channel now have a consistent physical interpretation given in units
m/γ across all tiles. The modified metric normalization method is provided in Algorithm 3.
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Algorithm 3: Nodata-aware metric normalization

1 Calculate the valid index set defined by V = {(i, j) : Zi,j 6= nodata}.

2 Calculate β = min
(i,j)∈V

Zi,j and define a global scaler γ > 0.

3 Construct normalized raster defined by

Ẑi,j,z =

{
Zi,j−β
γ , if (i, j) ∈ V,

0, otherwise.

A comparison of these two normalization methods, Algorithm 2 and Algorithm 3 that is, will be
provided in Section 3.4.
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3 Experiments

This section will investigate the prediction of building outlines using data produced by the
pipeline outlined in Section 2. The U-Net model architecture presented in Section 1.5 is used for
semantic segmentation. We start by describing the general experimental setup in Section 3.1. A
comparative investigation into the suitability of the different raster data types (aerial photogra-
phy and/or LiDAR DSMs) for predicting building outlines is presented in Section 3.2. In Sec-
tion 3.3 we investigate if techniques intended to combat overfitting and increase training speed
actually have their intended effect; specifically batch normalization, dropout, and data augmen-
tation. The LiDAR raster normalization methods presented in Algorithm 2 and Algorithm 3 are
implemented and compared in Section 3.4. Finally, Section 3.5 compares the empirical efficiency
of different surrogate loss functions.

3.1 Experimental Setup

Training procedure

Training summary
• 58 559 labeled geographic tiles:

256 px× 256 px = 64m× 64m.
• 41 018 / 8788 / 8753

training / validation / test.
• Random shuffling.
• 16 variations of augmentation.
• Adam optimizer.
• Validation IoU early stopping.

The Trondheim dataset produces 58 559 geographic tiles
after being processed, each tile including aerial photogra-
phy (RGB) data, elevation data (LiDAR elevation), and
ground truth masks for building footprints. This sample
space is split into a customary 70% / 15% / 15% training–
validation–testing split. The training data is randomly shuf-
fled and augmented at the beginning of each epoch in order
to reduce overfitting. The data augmentation consists of a
random application of horizontal and/or vertical flipping in
addition to a rotation by a random integer multiple of 90
degrees. The training data is subsequently grouped into batches of size 16 before applying the
Adam optimizer. Training is continued until observed convergence by the use of the IoU evalua-
tion of the validation split. The weights corresponding to the epoch yielding the best validation
metric is used as the final model parametrization.

Software

The source code written in order to produce and present the results in this paper is openly
available at https://github.com/JakobGM/project-thesis. The majority of the source code
is written in Python as it arguably has the best software ecosystem for both GIS and deep
learning workflows. This work would not have been possible if not for the vast array of high
quality open source software available. The Geospatial Data Abstraction Library (GDAL) [12]
has been extensively used in order to process GIS data, and the python wrappers for GDAL,
Rasterio [14] for raster data and Fiona [13] for vector data, are central building blocks of the data
processing pipeline. The machine learning framework of choice has been the new 2.0 release of
TensorFlow [1], most of the modelling code having been written with the declarative Keras API.
This is not an exhaustive list of all dependencies, but a complete list of software dependencies
and a reproducible Docker [40] image is provided with the source code for this project.
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Hardware and performance

All numerical experiments have been performed by a desktop class computer with the following
relevant technical specifications:

• Processor: AMD Ryzen 9 3900X.
12 cores / 24 threads, 3.8 GHz base clock / 4.6 GHz boost clock.

• Graphics card: MSI GeForce 2070 Super.
8 GB GDDR6 VRAM, 1605 MHz clock speed, 9.062 TFLOPS 32-bit performance.

• Memory: Corsair Vengeance LPX DDR4 3200 MHz 32GB.
• Storage: Intel 660p 1TB M.2 SSD.
Up to 1800 MB s−1 read and write speed.

Model performance
• 218ms per training step (batch 16)

=⇒ 14ms per sample.
• 11min per training epoch

=⇒ ≈ 16.5 h per experiment.
• 8ms per prediction (batch 1)

=⇒ 125 predictions per second.

With a batch size of 16, each training step requires
218 ms of computation, resulting in approximately 14 ms
per geographic tile. When including the streaming of
data from disk, updating weights based 2563 training
batches of size 16, validating the model on 549 addi-
tional validation batches, and executing various Keras
callbacks, each epoch lasts for 11 minutes from end to
end. Most experiments have been trained for 90 epochs,
hence requiring altogether 16 and a half hours of training. The final models are able to produce
125 predictions of size 256 px× 256 px per second.

3.2 Features

The two types of available remote sensing data is LiDAR elevation data and aerial photography,
the latter simply referred to as RGB data from now on. We will investigate to what degree these
features are useful for predicting building outline segmentation masks. Of special interest is how
these two feature types compare to each other when it comes to the predictive accuracy. Both
feature types provide birds-view perspectives, and building outline segmentation is therefore
essentially equivalent to roof surface detection. We hypothesize that models based on LiDAR
will fare better than RGB models due to the importance of the flatness and relative height of
roof surfaces, a more characteristic property than the specific visual appearance of roof surface
textures. A model using both features types combined will also be constructed and trained, and
we will compare the accuracy of this model to the two models using the respective feature types
in isolation.

RGB data

We start by training a model based solely on RGB data, every color channel normalized as
explained in Section 2.6. The training procedure is illustrated in Figure 27.
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Figure 27: Training of U-Net model for 89 epochs, using RGB data. The training epochs
are given along the horizontal axis, while the end-of-epoch IoU evaluations are given along the
vertical axis. Validation split IoU is shown as a blue solid line, while the training split IoU is
shown as a blue dashed line. The epoch yielding the best validation IoU is annotated as a solid
blue circle, in this case the 88th epoch with a validation IoU of 0.9081.

As can be seen in Figure 27, the training and validation IoU metrics improve relatively consis-
tently from epoch to epoch, with the exception of epoch 24 where a large spike can be observed
in the validation IoU. Such spikes will reappear in later training procedures, but the models
always recover in the subsequent epochs. Training is continued until validation IoU does not
improve, and the epoch corresponding to the best validation IoU used used as the final model
parametrization. The final model is evaluated on the test set and the distribution of the resulting
IoU test metrics is shown in Figure 28.

≤ 0.8 0.83 0.85 0.88 0.90 0.93 0.95 0.98 1.00

Test IoU

0

100

200

300

400

500

600

700

N
u
m
b
e
r
o
f
ti
le
s

IoU ≤ 0.8
(7%)

Test IoU distribution

Median = 0.932

IQR = [0.90, 0.951]

Mean = 0.900

Figure 28: Distribution of IoU evaluations of the RGB model over tiles from the test set.
The left tail of the distribution (IoU ≤ 0.8) constituting 7 % of the data has been cropped and
included into the left-most bin colored in red. The interquartile range (IQR) is annotated in
orange and the mean in green.



3.2 Features 37 of 71

Figure 28 shows that the IoU test metrics portray a left-skewed distribution with mean 0.9, while
7% of all test cases have IoU metrics less than or equal to 0.8. In order to get a more intuitive
understanding of the model performance we plot the segmentation corresponding to the median
IoU metric of the test set in Figure 29. All upcoming prediction plots, unless otherwise stated,
will use features exclusively from the test set.

RGB input

Loss = 0.0200, IoU = 0.9315

Sigmoid activations TP, TN, FP, FN (cut-o� = 0.5)

TP TN FP FN

Figure 29: Median IoU prediction from the test set. The left panel shows the RGB input
provided to the model before normalization. The middle panel shows the final sigmoid output
of the model. A diverging color scheme is used for the activations where red indicates output
values close to 0 and blue indicates output values close to 1. Values close to 0.5 are shown in
white. The pixels situated along the borders of the discretized ground truth mask are shown
in black in both the left and middle tile. Finally, the right tile shows the classification of each
segmentation pixel, either true positive (TP), true negative (TN), false positive (FP), and false
negative (FN). These classifications are calculated by using a threshold of 0.5 and comparing the
thresholded values to the ground truth mask.

Half of the model predictions using the test set are at least as good as the prediction shown
in Figure 29, and likewise for worse predictions. We will now investigate the worst-case model
predictions in order to identify the conditions under which the model does not perform well.
These conditions can be divided into two categories: those conditions which are closely related
to the nature of RGB data, and those who are not. Two illustrative examples from the latter
category are shown in Figure 30. Figure 30 shows the worst outliers in the test set, prediction
(30 a) being the worst prediction overall, while prediction (30 b) is the worst prediction with
an above-average building density. These two predictions demonstrate the two main causes for
negative outliers in the metrics. The first one, as shown in prediction (30 a), is when segmenta-
tion mask becomes vanishingly small. Small masks are not just generally difficult for CNNs to
segment, they are also negatively affected by the fact that the IoU metric becomes more sensitive
to single-pixel changes. That is, misclassifying 100 pixels when the ground truth mask contains
10 000 pixels yields a much greater IoU metric compared a ground truth mask of only 1000 posi-
tive pixels. The consequence of this phenomenon is demonstrated in Figure 31, where it becomes
clear that the worse model evaluations are generally characterized by being low building density
tiles.
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RGB input

Loss = 0.0135, IoU = 0.0000

Sigmoid activations TP, TN, FP, FN (cut-o� = 0.5)

TP TN FP FN

(30 a)

RGB input

Loss = 5.9787, IoU = 0.2902

Sigmoid activations TP, TN, FP, FN (cut-o� = 0.5)

TP TN FP FN

(30 b)

Figure 30: Prediction 30a, shown on the top, is the worst prediction in the test set with an
IoU metric of 0. Prediction 30b, shown on the bottom, is the worst prediction amongst all test
cases with above-average building densities (17.1 %). See caption of Figure 29 for detailed figure
explanation.
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Figure 31: Figure showing the relationship between ground truth building density and the
respective IoU evaluation for the test set. The orange line indicates the interval mean IoU along
the building density axis, interval length being 1%.
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The second issue causing negative outliers is the presence of wrong data in the ground truth
segmentation masks, as shown in prediction (30 b) in Figure 30. Such errors are almost exclusively
caused by buildings having been built or demolished in the intermittent time period between the
datum of the feature data set and the datum of the ground truth data set. The presence of errors
in the ground truth mask is fortunately rarely observed.

We will now look at the remaining category of negative outliers, a category much more related
to the intrinsic properties of RGB data and its use as a predictor. Inspection of these failures
may help us gain some insight into the internals of the model and how it constructs predictions.
We present four illustrative examples of when the RGB model faces difficulties in Figure 32.
Prediction (32 a) demonstrates the importance of contrast in order to distinguish the edges of
building outlines. Ground truth mask edges with low RGB contrast are often wrongly segmented.
The same can be said of mask interiors with high contrast “fake” edges as in (32 b). The texture
of the roof surface also seems to be taken into account by the model, as shown in prediction (32 c)
where the presence of white flecks on the eastern roof impedes the model’s ability to recognize
the surface as being part of a roof, while this issue is not observed with the roof surface on the
western half of prediction (32 c) where a more common roof texture is present. Roof surfaces
covered with greenery as shown in prediction (32 d) also cause difficulties for the model; not
unexpected since it can be considered a type of camouflage.

RGB input

Loss = 1.8984, IoU = 0.5983

Sigmoid activations TP, TN, FP, FN (cut-o� = 0.5)

TP TN FP FN

(32 a)

RGB input

Loss = 0.1958, IoU = 0.8266

Sigmoid activations TP, TN, FP, FN (cut-o� = 0.5)

TP TN FP FN

(32 b)

Figure 32: Continued on next page. . .
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RGB input

Loss = 0.3895, IoU = 0.8312

Sigmoid activations TP, TN, FP, FN (cut-o� = 0.5)

TP TN FP FN

(32 c)

RGB input

Loss = 0.1403, IoU = 0.8143

Sigmoid activations TP, TN, FP, FN (cut-o� = 0.5)

TP TN FP FN

(32 d)

Figure 32: Illustrative failures of CNN segmentation of building outlines using RGB data.

We hypothesized in Section 2.3 that improper orthophotos, aerial images with non-orthogonal,
non-vertical perspectives, would cause a high degree of segmentation misalignment due to the
RGB photo being pixel-misaligned with respect to the geographically specified building outline.
In practice, however, the RGB model seems to be remarkably well adjusted to misaligned per-
spectives as can be seen in Figure 33. The “RGB input” panel shown in prediction (33 a), for
instance, shows a ground truth mask shifted southwards relative to the apparent north edge
of the roof. Prediction (33 a) produces a relatively good segmentation mask under the circum-
stances, remarkably predicting the north edge of the roof quite accurately. This correction of
perspective is highly intentional, as it is not the pixels themselves we would like to segment per
se, but rather the geographic location of the building outline.
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RGB input

Loss = 0.0828, IoU = 0.9208

Sigmoid activations TP, TN, FP, FN (cut-o� = 0.5)

TP TN FP FN

(33 a)

RGB input

Loss = 0.0286, IoU = 0.9019

Sigmoid activations TP, TN, FP, FN (cut-o� = 0.5)

TP TN FP FN

(33 b)

Figure 33: RGB model predictions on images with a high degree of perspective misalignment.
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LiDAR data

A model using only LiDAR data is trained, and the training procedure is summarized in Fig-
ure 34.

0 20 40 60 80

Epoch

0.825

0.850

0.875

0.900

0.925

0.950

Io
U

Without rgb

IoU: 0.9366

Validation

Train

≤ 0.8 0.85 0.90 0.95 1.00

Test IoU

0

200

400

600

800

N
u
m
b
e
r
o
f
ti
le
s

IoU ≤ 0.8
(5%)

Median = 0.954

IQR = [0.93, 0.968]

Mean = 0.922

Figure 34: Left – IoU evaluations during training of the LiDAR U-Net model for 89 epochs.
Right – Test IoU distribution of LiDAR model, left 5 % of data cropped. See caption of Figure 28
for detailed description.

The LiDAR model performs better than the RGB model in all observed aggregate performance
measures. Replacing RGB data with LiDAR data increases the mean test IoU from 0.900 to
0.922 and the median test IoU from 0.932 to 0.954, for instance. The number of negative outliers
in the test set, that is tiles with IoU ≤ 0.8, also decreases from 7% to 5%. As with the LiDAR
model we present the median performing prediction in the test set in Figure 35.

LiDAR input

Loss = 0.0206, IoU = 0.9545

Sigmoid activations TP, TN, FP, FN (cut-o� = 0.5)

TP TN FP FN

Figure 35: LiDAR model median IoU prediction from the test set. The left panel shows the
single-channel LiDAR input provided to the model. The remaining two panels are identical to
previous prediction plots; see caption of Figure 29 for detailed explanation.

The LiDAR model has a comparative advantage over the RGB model in that it manages to
predict straight edges with a greater degree of confidence and accuracy. Whenever the LiDAR
models fails it often includes and/or excludes a “well-defined” region and as a result still produces
properly shaped building outlines. The erroneous inclusion of an extended roof overhang over
a front door or the exclusion of a small and low building annex are two examples of commonly
observed “well-behaved failures”.
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While it has been established that the LiDAR model outperforms the RGB model in aggregate,
it is still of interest to compare these two models on a more case-by-case basis. The two models
are compared tile-by-tile in the IoU scatter plot presented in Figure 36.
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Figure 36: Scatter plot showing the correlation between the evaluation metric performance of
two models using different data, LiDAR vs. RGB. Each blue scatter point (xi, yi) corresponds to
a given tile, i, where the x-coordinate is the IoU metric of the LiDAR model prediction and the
y-coordinate is the IoU metric of the RGB model prediction for that given tile. Tiles belonging
to the train split are shown in the left half while the tiles belonging to the test split are shown
in the right. The horizontal dashed lines in orange indicate the mean IoU metric of the RGB
model for the respective splits, while the vertical dashed lines in green indicate the mean IoU
for the LiDAR model. Diagonal black lines indicates x = y, and the arrows with accompanying
percentages indicate the fraction of points above and below this line. Scatter points located
above the black diagonal line indicate tiles where the RGB model performs better than the
LiDAR model, while scatter points located below the diagonal represent tiles where the LiDAR
model performs better than the RGB model.

If the RGB and LiDAR models would have been indistinguishable w.r.t. predictive performance
then the scatter points would be entirely situated along the diagonal black lines in Figure 36,
which is clearly not the case here due to the LiDAR model outperforming the RGB model. While
LiDAR is on average better than RGB, RGB still outperforms LiDAR in about 21 % of the test
cases. This may be partly caused by the randomness introduced into the training procedure,
and thus the final model parametrization, but may also be an indication of RGB containing
predictive information that LiDAR does not possess in certain cases. If this is the case, then a
combined data model which uses both LiDAR and RGB might outperform both of these single
data source models.
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LiDAR input

Loss = 0.0039, IoU = 0.0000

Sigmoid activations TP, TN, FP, FN (cut-o� = 0.5)

TP TN FP FN

(37 a)

LiDAR input

Loss = 7.5075, IoU = 0.3064

Sigmoid activations TP, TN, FP, FN (cut-o� = 0.5)

TP TN FP FN

(37 b)

Figure 37: LiDAR model prediction on same input as presented in Figure 30.

Figure 37 presents the predictions produced by the LiDAR model over the same geographic area
as the RGB model predictions presented in Figure 30. The LiDAR model predictions, (37 a)
and (37 b), demonstrates the same issues as seen with the RGB model, namely vanishingly small
segmentation masks and erroneous ground truths. This comes as no surprise, especially since
these issues are considered unrelated to the intrinsic properties of RGB data. What about the
prediction issues exemplified in Figure 32 which were considered specific to RGB data; are these
issues remedied by the LiDAR model? Figure 38 presents the LiDAR model predictions over the
same geographic area as used by RGB model predictions presented in Figure 32.

LiDAR input

Loss = 0.1479, IoU = 0.9211

Sigmoid activations TP, TN, FP, FN (cut-o� = 0.5)

TP TN FP FN

(38 a)

Figure 38: Continued on next page. . .
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LiDAR input

Loss = 0.0059, IoU = 0.9894

Sigmoid activations TP, TN, FP, FN (cut-o� = 0.5)

TP TN FP FN

(38 b)

LiDAR input

Loss = 0.0162, IoU = 0.9893

Sigmoid activations TP, TN, FP, FN (cut-o� = 0.5)

TP TN FP FN

(38 c)

LiDAR input

Loss = 0.0321, IoU = 0.9578

Sigmoid activations TP, TN, FP, FN (cut-o� = 0.5)

TP TN FP FN

(38 d)

Figure 38: LiDAR model prediction over same geographic area as used in Figure 32.

As can be seen in Figure 38, the texture and contrast issues observed in Figure 32 have been
largely corrected in the LiDAR model predictions, although prediction (38 a) still has some errors.
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RGB input

Loss = 0.0655, IoU = 0.0192

RGB model

(39 a)

LiDAR input

Loss = 0.0026, IoU = 0.9431 TP TN FP FN

LiDAR model

(39 b)

RGB input

Loss = 0.6794, IoU = 0.7185

RGB model

(39 c)

LiDAR input

Loss = 0.0177, IoU = 0.9857 TP TN FP FN

LiDAR model

(39 d)

Figure 39: Geographic test tiles where the LiDAR model performs much better than the RGB
model. The top half shows the greatest improvement when going from RGB to LiDAR, while
the bottom half shows the next best improvement for the geographic tiles with above-average
building density.
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Figure 39 presents two test cases where the LiDAR model outperforms the RGB model to a large
degree. The LiDAR model generally performs better than the RGB model when encountering
building outlines situated along the borders of the input tiles, usually requiring less spatial
context before being able to distinguish buildings. RGB prediction (39 c) suffers from three
common RGB issues: contrasts, roof greenery, and non-orthogonal perspective, while LiDAR
prediction (39 d) suffers from none of these issues.

As can be seen in Figure 36 there are certain test cases where the RGB model outperforms the
LiDAR model to a significant degree, two such cases being presented in Figure 40. Prediction
(40 b) demonstrates how good the RGB model is in detecting the presence of orange roof tiles,
no matter how small the area, while LiDAR prediction (40 a) faces difficulty due to the dense
greenery. LiDAR prediction (40 c) seems to have too little context in order to determine what is
ground level and what is not, while RGB prediciton (40 d) manages much better, probably due
to the typical roof texture.

LiDAR input

Loss = 0.0075, IoU = 0.0000

LiDAR model

(40 a)

RGB input

Loss = 0.0021, IoU = 0.8610 TP TN FP FN

RGB model

(40 b)

Figure 40: Continued on next page. . .
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LiDAR input

Loss = 1.4379, IoU = 0.7469

LiDAR model

(40 c)

RGB input

Loss = 0.0146, IoU = 0.9945 TP TN FP FN

RGB model

(40 d)

Figure 40: Geographic test tiles where the RGB model performs significantly better than the
LiDAR model.
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Combined data

We now construct a model which uses both LiDAR and RGB data in combination in order to
produce predictions. The training procedure of the combined data model is shown in Figure 41,
and the training procedure of the LiDAR model has been included for comparison.
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Figure 41: Left – IoU evaluation during training of U-Net models for 89 epochs. Blue indicates
the model using just LiDAR data, while orange is used to indicate the combined data model (RGB
+ LiDAR). Right – Test IoU distribution of combined data model, left 5 % of data cropped.
See caption of Figure 28 for detailed description.

The median performing test prediction is shown in Figure 42.

LiDAR input RGB input

Loss = 0.0203, IoU = 0.9574

Sigmoid activations TP, TN, FP, FN (cut-o� = 0.5)

TP TN FP FN

Figure 42: Median IoU prediction from the test set using both remote sensing data types, RGB
and LiDAR.
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Most predictions produced by the combined model show the same behaviour and general weak-
nesses as the model based solely on LiDAR data. Although the LiDAR model outperformed the
RGB model in every aggregate metric, indicating that RGB is a worse predictor than LiDAR,
using RGB in addition to LiDAR as input data still increases the test performance of the re-
sulting model. When adding RGB to to LiDAR model, the mean IoU on the test set improves
from 0.934 to 0.938, not an insignificant improvement. A tile-by-tile comparison of the LiDAR
model and the combined data model, similar to the comparison presented in Figure 36, is shown
in Figure 43. The combined data model outperforms the LiDAR model in 61.2 % of all test cases.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

L
iD
A
R
+
R
G
B
[I
o
U
]

30.5%
69.5%

IoU = 0.953

Io
U

=
0
.9
4
6

Train split

0.0 0.2 0.4 0.6 0.8 1.0

36.1%
63.9%

IoU = 0.930

Io
U

=
0
.9
2
2

Test split

LiDAR [IoU]

Figure 43: Scatter plot showing the correlation between the evaluation metric performance of
two models, LiDAR vs. RGB + LiDAR. The combined data model is shown along the vertical
axis, while the model using just LiDAR data is shown along the horizontal axis. See caption
of Figure 36 for detailed figure explanation.

In what way does the combined data model outperform the LiDAR model? The combined model
usually produces predictions almost identical to the LiDAR model, but in the minority of the
cases where the RGB model performs better than the LiDAR model, the combined model seems
to mimic the RGB model rather than the LiDAR model. Previously, in Figure 40, we presented
two test tiles where the RGB model evaluated better than the LiDAR model. The combined
data model predictions on the same test tiles are presented in Figure 44.
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LiDAR input RGB input

Loss = 0.0010, IoU = 0.8293

Sigmoid activations TP, TN, FP, FN (cut-o� = 0.5)

TP TN FP FN

LiDAR input RGB input

Loss = 0.0025, IoU = 0.9991

Sigmoid activations TP, TN, FP, FN (cut-o� = 0.5)

TP TN FP FN

Figure 44: Predictions on test tiles using the model trained on both LiDAR data and RGB data
in combination. The individual data model predictions using the same tiles are given in Figure 40.

The observed pattern is that the combined data model usually imitates the LiDAR-only model,
only deviating whenever the RGB data is more descriptive than the LiDAR data. Figure 45
substantiates this interpretation of how the combined data model improves upon the LiDAR
model.
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Figure 45: Scatter plot of points (xi, yi), one point for each test tile, i. The x-coordinate is
the difference between the RGB model’s IoU evaluation and the LiDAR model’s IoU evaluation,
i.e. how much better RGB performs than LiDAR. The y-coordinate is the difference between the
combined data model’s IoU evaluation and the LiDAR model’s evaluation, i.e. how much better
the combined data performs compared to using LiDAR in isolation. The median y-coordinate
has been calculated for non-overlapping bins of width ∆x = 0.1 and have been annotated in
orange.
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Each scatter point in Figure 45 represents a geographic tile in the test split, and the coordinates
(xi, yi) are derived from linear combinations of the IoU metrics of the LiDAR model, RGB model,
and the combined data model. The x-coordinate is the difference between the IoU of the RGB
model prediction and the IoU of the LiDAR model prediction. In other words, whenever x > 0,
the RGB model performs better than the LiDAR model. The y-coordinate is the difference
between the combined data model’s IoU metric and the LiDAR model’s IoU metric. Whenever
y > 0, the combined data model performs better than the model based on just LiDAR data.
Consider a hypothetical model which is able to omnisciently select between the RGB and LiDAR
model based on which maximizes the resulting evaluation performance; such a model would
produce scatter points according to the relation y = max(0, x) in Figure 45. The combined data
model does in fact produce predictions somewhat in accordance to this relation as illustrated by
the “moving median” in Figure 45.

3.3 Regularization Techniques

In previous sections we have presented techniques such as batch normalization, dropout, and
data augmentation, and claimed that these techniques have been empirically shown to combat
overfitting and/or decrease training times. Unfortunately, machine learning techniques are often
highly context dependent with respect to their efficiency, and this section is therefore intended
as a verification of these techniques in the context of remote sensing data and building footprint
segmentation.

Batch normalization

We have trained two U-Net models on LiDAR data, one with batch normalization and one
without, the training procedure of both these models being presented in Figure 46.
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Figure 46: Training procedure of two U-Net models on LiDAR data, one employed with batch
normalization shown in blue, while the other has no batch normalization and shown in orange.
Left panel shows the IoU metric evaluations, while the right panel shows the binary cross-entropy
loss.

The comparative performance improvement of the batch normalized model over the model with-
out batch normalization becomes immediately clear from Figure 46. What is of particular interest
is that the batch normalization does not only increase the speed of optimizing the loss function,
but it also improves the final model performance in form of validation IoU. Of all the A/B tests
conducted in this section, this test has had the most significant effect.



3.3 Regularization Techniques 53 of 71

Dropout

As with the batch normalization experiment, we now train one model with max-pooling dropout
and one without, and the training results are presented in Figure 47.
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Figure 47: Left – Training procedure of two U-Net models on LiDAR data, one employed with
max-pooling dropout shown in blue, while the other uses no max-pooling dropout and is shown
in orange. Right – Test IoU distribution of LiDAR model without dropout, left 6 % of data
cropped. See caption of Figure 28 for detailed description.

While the improvement of batch normalization was immediately obvious, the effect of dropout
is more difficult to interpret from the left panel of Figure 47 alone as we only observe a marginal
IoU validation metric improvement from 0.9335 to 0.9363. On the other hand, the right panel
of Figure 47 shows that the interquartile range and median of the test IoU metrics are identical
across the two models, but that the right-end tail of the distribution has grown thicker. Methods
preventing overfitting will hypothetically bridge the gap between the training- and test-evaluation
of the model. As dropout is primarily intended as a measure to prevent overfitting, we will
investigate the performance of both models on the training set and compare this with their
performance on the test set. Figure 48 presents a comparison of these two models, a plot similar
to the one shown in Figure 36.
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Figure 48: Scatter plot showing the correlation between the evaluation metric performance of
two models, one with max-pooling dropout and one without. The model without dropout is
shown along the vertical axis, while the model with dropout is shown along the horizontal axis.
See caption of Figure 36 for detailed figure explanation.
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The U-Net model without dropout largely outperforms the model with dropout on the training
set, having a better IoU evaluation on about 98% of all training tiles and a mean training IoU of
0.958, which is substantially better than the dropout model with a mean training IoU of 0.946.
What is of particular interest, though, is that the dropout model generalizes much better to the
test tile set, so much so that it narrowly outperforms the model without dropout on the test
set. The 98% / 2% split is reduced to a more even 53% / 47% split, making the two models
approximately tied. The mean test IoU of the dropout model, 0.922, is also better than the
mean test IoU of the non-dropout model, 0.918. Altogether this can be considered quite strong
evidence in favor of max-pooling dropout having reduced the overfitting of our model. The
application of dropout during model training likely increases the generalizability of our model as
it improves its ability to predict building outlines from previously unseen remote sensing data.

Data Augmentation

Finally we investigate the effect of data augmentation when training the LiDAR model, compar-
isons of the two models being presented in Figure 49. The data augmentation consists of random
application of horizontal and/or vertical flipping in addition to a rotation by a random multiple
of 90 degrees, resulting in altogether 16 random configurations of each training tile.
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Figure 49: Top left – Training procedure of two U-Net models on LiDAR data, one employed
with data augmentation shown in blue, while the other uses no data augmentation and is shown
in orange. Top right – Test IoU distribution of model trained without data augmentation,
left 5 % of data cropped. See caption of Figure 28 for detailed description. Bottom – Scatter
plot showing the correlation between the evaluation metric performance of two models, one with
data augmentation (horizontal) and one without (vertical). See caption of Figure 36 for detailed
figure explanation.
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No significant difference between the two training schemes can be observed in Figure 49. The
observed differences between the two resulting models can as likely be attributed to random
noise than any causal effect of the data augmentation procedure. The augmentation techniques
applied during training, namely flipping and 90 degree rotations, have intentionally been selected
in order to be negligible in computational cost. They do not require any de facto calculations as
they can be implemented by simply traversing the memory layout in a different manner, and are
therefore constant O(1) time cost operations. Considering that data augmentation is cheaply
performed and we have no evidence contrary to it being a positive influence of the generalizability
of the model, we conclude that data augmentation should be performed during training. Finally,
it is worth noting that the data augmentations applied in this case are rather simple and minor
forms of data augmentation. More major augmentation forms might have a bigger effect.

3.4 LiDAR Normalization

We will now investigate how the normalization of LiDAR raster elevation values influences the
predictive performance of the resulting model. The “nodata-aware local min-max normalization”
method described in Algorithm 2 on page 32 will be simply referred to as “dynamic scaling”
as it scales each elevation tile individually to the [0, 1] domain. Likewise, the “nodata-aware
metric normalization” method described in Algorithm 3 on page 33 will be simply referred to as
“constant scaling” as it always scales by a constant factor γ−1. The training procedures of two
models employing these two different LiDAR normalization methods are shown in Figure 50.
The global scaler γ, as specified in Algorithm 3, is chosen to be 30. Small values for this global
scaler, γ < 10, results in no training convergence whatsoever, while large enough values have
been shown to not differ significantly in performance.
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Figure 50: Left – Training procedure of U-Net LiDAR model using two different normalization
methods. The model using “dynamic scaling” as specified in Algorithm 2 is shown in blue, while
the model using “constant scaling” with γ = 30 as specified in Algorithm 3 is shown in orange.
Right – Test IoU distribution “dynamic scaling” model, left 4 % of data cropped. See caption
of Figure 28 for detailed description.

Figure 50 shows a small improvement of using the constant scaling over the dynamic method, an
improvement of validation IoU from 0.9366 to 0.9393, although not much can be concluded from
this figure alone. A comparison over the training and test splits of the two models is presented
in Figure 51.
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Figure 51: Scatter plot showing the correlation between models using different LiDAR nor-
malization methods, IoU of the “constant scaling” model annotated along the vertical axis while
the IoU of the “dynamic scaling” model is annotated along the horizontal axis. See caption
of Figure 36 for detailed figure explanation.

The “constant scaling” normalization method does in fact perform better than the “dynamic
scaling” normalization method over all three sample splits: training, validation, and test. When
the normalization method is changed to the constant scaling method, the mean test IoU metric
improves from 0.922 to 0.929, and 63% of the test cases perform better. Some of the test cases
where the constant scaling model performs better are tiles containing large, flat areas that are not
part of a roof, for example cadastral plots situated along the shoreline as presented in Figure 52.
Although we have established that constant scaling is an overall improvement over dynamic
scaling, we have not been able to identify any further problem characteristics where constant
scaling generally performs better. It was hypothesized that constant scaling would outperform
dynamic scaling whenever the elevation range within a given tile became very small or very large,
this being due to the lossy compression of dynamic scaling forcing all elevation values into the
[0, 1] value range. Such an effect has not been observed. The largest improvement of the constant
scaling model over the dynamic scaling model has largely been due to an improvement in recall
from 88.92 % to 89.33 %, while precision only improved from 89.21 % to 89.22 %.
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LiDAR input

Loss = 0.1413, IoU = 0.0173

Dynamic scaling model

(52 a)

RGB (not used)

Loss = 0.0009, IoU = 0.8657 TP TN FP FN

Constant scaling model

(52 b)

Figure 52: Geographic test tiles where the constant scaling model (top) performs much better
than the dynamic scaling model (bottom).

3.5 Losses

So far all model experiments have been exclusively trained by optimizing the binary cross-entropy
loss (BCEL) function given in equation (1). While BCEL is by far the most popular loss function
for binary classification tasks, it is still considered a suboptimal surrogate loss function for
segmentation metrics such as IoU. Alternative loss functions were discussed in Section 1.3, the
so-called soft loss variants being of greatest interest. The soft Jaccard loss given in equation (2)
and soft dice loss given in equation (3) have specifically been shown to be efficient surrogate loss
functions for the IoU metric, both theoretically and empirically. Three models have been trained
and evaluated for this numerical experiment, the only difference being which loss function that
has been used during training: binary cross-entropy, soft Jaccard loss, or soft dice loss. The
training procedures of these three models are visualized in Figure 53. The soft dice loss model
is almost identical to the soft Jaccard loss model in behaviour and performance, so in order to
avoid repetitiveness we will mainly compare the BCEL model to the soft Jaccard model and
ignore the soft dice model.
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Figure 53: Left – Three U-Net LiDAR models trained with different loss functions. Binary
cross-entropy model shown in blue, soft Jaccard in orange, and soft dice shown in green. Right –
Test IoU distribution of soft Jaccard model, left 6 % of data cropped. See caption of Figure 28
for detailed description.

The three models presented in the left panel of Figure 53 start out at approximately the same
point after one epoch, but the binary cross-entropy model quickly outperforms the two other
models when it comes to mean validation IoU. The same can be said of the test IoU metrics of
the soft Jaccard model as presented in the right panel of Figure 53, the soft loss model being a
performance regression over the BCEL model in every conceivable way. The soft losses seem to
be worse surrogate losses for the IoU metric rather than better ones, completely contradicting
our prior beliefs.
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Figure 54: Scatter plot showing the correlation between models using different losses during
training. Both the left and right half of this figure compares model IoU against the binary
cross-entropy IoU along the horizontal axis. Left figure half shows the soft Jaccard model on
the vertical axis, while the right half shows the soft dice loss along the vertical axis. See caption
of Figure 36 for detailed figure explanation.

Figure 54 shows that the soft models perform worse than the BCEL model on the test set. Of
greater interest, however, is the large discrepancy between how the BCEL model and the soft
models perform on the training set. There are certain training tiles where the soft models are
not able to learn from the labeled data at all, while the BCEL model has no such difficulties.
When inspecting these cases, they are usually characterized by one of two properties:

1) bad data used as ground truth, or. . .
2) exceptionally difficult problems in the form of vanishingly small building outlines.

Both these cases are illustrated in Figure 55.
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LiDAR input

Loss = 99.2696, IoU = 0.0000

Soft Jaccard model

(55 a)

RGB (not used)

Loss = 0.0254, IoU = 0.9467 TP TN FP FN

Binary cross-entropy model

(55 b)

LiDAR input

Loss = 69.1358, IoU = 0.0000

Soft Jaccard model

(55 c)

RGB (not used)

Loss = 0.0008, IoU = 0.9362 TP TN FP FN

Binary cross-entropy model

(55 d)

Figure 55: Training tiles where the BCEL model performs substantially better than the soft
Jaccard model.
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The regression in performance of the soft Jaccard model on the training set translates to a worse
test performance as well, although to a lesser degree. Interestingly, whenever the soft Jaccard
model performs worse than the BCEL model on test cases, it usually produces “well-behaved”
failures, failures that could conceivably be made by humans as well. Such failures are presented
in Figure 56. In the opposite case, whenever the soft Jaccard model performs better than
the BCEL model, it is usually due to the BCEL model having made “badly behaved” failures,
failures that would never have been produced by a human. The BCEL model does in certain
cases produce egregiously bad false positives. This can conceivably be caused by the willingness
of the BCEL model to learn from clearly wrong ground truth masks in the training set. Such
false positives are in certain cases corrected by the soft Jaccard model, as presented in Figure 57.
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LiDAR input

Loss = 73.0687, IoU = 0.2643

Soft Jaccard model

(56 a)

RGB (not used)

Loss = 0.0018, IoU = 0.9987 TP TN FP FN

Binary cross-entropy model

(56 b)

LiDAR input

Loss = 77.8359, IoU = 0.0000

Soft Jaccard model

(56 c)

RGB (not used)

Loss = 0.0058, IoU = 0.6083 TP TN FP FN

Binary cross-entropy model

(56 d)

Figure 56: Test tiles where the BCEL model performs substantially better than the soft Jaccard
model.
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LiDAR input
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Soft Jaccard model

(57 a)

RGB (not used)

Loss = 0.0954, IoU = 0.7756 TP TN FP FN

Binary cross-entropy model

(57 b)

LiDAR input
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Soft Jaccard model
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RGB (not used)

Loss = 0.1331, IoU = 0.8154 TP TN FP FN
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Figure 57: Test tiles where the soft Jaccard model performs substantially better than the
BCEL model.
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Conclusion and Further Work

A test performance summary of some of the model experiments from Section 3 is presented
in Table 4.

Model IoU Accuracy Precision Recall

RGB 0.9005 98.67% 87.85% 87.26%
LiDAR 0.9216 99.03% 89.21% 88.92%
Combined 0.9304 99.12% 89.30% 89.29%
Constant scaling 0.9292 99.10% 89.22% 89.33%
Soft dice loss 0.9039 98.58% 87.90% 87.97%
Soft Jaccard loss 0.9081 98.64% 88.38% 87.86%

Table 4: Summary of numerical experiments. All metrics are averages over the test set. The
best model metric along each column is annotated in green, while the worst model metric is
annotated in red.

We can conclude that LiDAR data is more suitable for segmenting building footprints than RGB
data, but by combining LiDAR and RGB you end up with a model that performs even better
than LiDAR in isolation. When it comes to the method of normalizing LiDAR elevation rasters,
dividing by a constant, global scaler produces better results than “dynamic min-max” scaling. It
remains to be determined if this “constant” scaling method works in a combined data setting as
well.

In a purely quantitative sense the models trained with soft variant losses perform strictly worse
than the models trained with binary cross-entropy loss. On the other hand, the soft loss models
seem to be less prone to overfitting in addition to portraying a general degree of “common sense”
in its predictions, even when they fail. Since there are certain properties of both loss types that
are preferable to replicate in an ideal model, we propose training a model with a combined loss
function, L∗, in the form

L∗(P ;Y, α) = α · LBCE(P ;Y ) + (1− α) · LSJL(P ;Y ), α ∈ [0, 1],

where α is a hyperparameter to be tuned, and the losses LBCE and LSJL are respectively defined
in equation (1) and (2).

Building footprints can be considered a low-fidelity geographic data type. In my upcoming
master’s thesis I will investigate if the methods presented here can be modified in order to
predict higher-fidelity targets, specifically targets related to the three-dimensional geometry of
roof surfaces. The bottom of Figure 58 demonstrates the type of higher-fidelity data that is
available in Norway, namely three-dimensional line segments classified into categories such as
“ridge lines”. Being able to predict such features accurately from remote sensing data would
provide a much more complex understanding of roof surfaces geometries, yielding insight into
interesting properties of surfaces such as orientation, shape, and size. The number of real world
applications using such features is uncountable, and the quality and fidelity of labeled data
available in Norway offers an unique opportunity to apply deep learning techniques in order to
predict such features from remote sensing data.
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Figure 58: Top – Low-fidelity building footprint data marked in purple. Bottom – High-
fidelity geometric line segments defined from roof geometries. Ridge lines, for example, are shown
in red. ©Kartverket.
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Appendices

A GIS preprocessing

A.1 Overview

The preprocessing pipeline responsible for transforming raw GIS data into a format suitable for
machine learning is outlined in Figure 59.

𝑽𝒆𝒄𝒕𝒐𝒓 𝒅𝒂𝒕𝒂

Cadastral plots

Building outlines

Convert to
GeoPackage

(.gpkg)

Project into
UTM zone

Zero-buffer

𝑷𝒓𝒐𝒄𝒆𝒔𝒔𝒆𝒅 𝒗𝒆𝒄𝒕𝒐𝒓 𝒅𝒂𝒕𝒂

Cadastral plots

Building outlines

Tiling algorithmMasking algorithm

𝑹𝒂𝒔𝒕𝒆𝒓 𝒅𝒂𝒕𝒂

Aerial Photography (RGB)

Elevation data (LiDAR)

Project into UTM zone

Construct merged
VRT dataset

𝑹𝒂𝒔𝒕𝒆𝒓 𝒕𝒊𝒍𝒆𝒔

RGB

LiDAR

Buildings

Disk cache

Figure 59: Overview of the GIS preprocessing pipeline developed in order to train machine
learning models on geospatial data.
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A.2 Mapping between coordinate systems

GDAL provides the gdaltransform utility for transforming GIS data between coordinate systems,
for example converting from GPS to UTM 32V here:

$ gdaltransform \
-s_srs EPSG:4236 \
-t_srs EPSG:25832 \
${source_data} ${target}

Where $ indicates a shell, such as bash, where GDAL has been installed and is available in the
PATH.

A.3 Zero-buffering vector datasets

Section 2.2 discusses irregular vector data and how such vector features can be corrected by
applying a zero buffer. The ST_buffer() PostGIS function can be applied to arbitrary geometric
data with the ogr2ogr utility like so:

$ ogr2ogr -f "GPKG" ${output_file} ${input_file} \
-sql "select ST_buffer(Geometry, 0.0)"

Here we have also converted the given vector data file to the GeoPackage format. While geo-
graphic data providers use a wide array of file formats, most commonly GeoJSON, ESRI Shape-
files, and GML, we convert all files to the modern GeoPackage format. GeoPackage supports
unicode characters and has no length limit on data fields, and is therefore considered the best
format for modern GIS pipelines [21]. ogr2ogr supports file conversions between most com-
mon vector file formats, which makes the data pipeline generalizable data sourced from different
providers.

A.4 Merging raster datasets

Aerial photography and LiDAR data is usually provided in several smaller raster files organized
in a tiled pattern in order to reduce individual file sizes. Each file is a .geotiff file, a container
format which specifies relevant metadata and the underlying image data in a lossless format such
as PNG. This poses the problem of having to look up which files that cover a given geographic
region of interest and merging these files together before processing them.

A simpler approach is to create a GDAL Virtual Format file (VRT), a virtual dataset file referenc-
ing all the respective tiles and bands (GIS uses the term bands for what we would otherwise refer
to as image channels). In simple cases, a VRT file can be autogenerated with the gdalbuildvrt
GDAL utility.

$ gdalbuildvrt raster.vrt ${raster_directory}/*.tif

The resulting vrt file behaves like single, merged file, and can be read and processed by most
GIS tools. In practice it is just a simple XML file referencing all the underlying .geotiff files,
thus alleviating the need to load the entire raster dataset into memory every time.
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Using the same file format, we can also combine overlapping raster datasets by expanding the
number of channels in the resulting raster,

$ gdalbuildvrt \
-resolution ${resolution} \
combined.vrt \
-separate \
${vrt1} ${vrt2}

where -resolution can be set to either highest, lowest, or average, depending on how you
want to handle datasets with different raster resolutions. This is how we merge the aerial
photography (RGB) data with the DSM data (Z), resulting in a single consistent ZRGB dataset.
The resulting VRT file will only contain the first band from each source file, and needs to be
manually edited according to the VRT schema [47] in order to include the green and blue bands
of the original RGB dataset. Color interpretations for a ZRGB VRT raster are specified as
follows:

<ColorInterp>Gray</ColorInterp>
<ColorInterp>Red</ColorInterp>
<ColorInterp>Green</ColorInterp>
<ColorInterp>Blue</ColorInterp>

Remember to increment the band and SourceBand numbers as well; the following eight lines
should be placed at suitable locations in the VRT XML file.

<VRTRasterBand dataType="Byte" band="1">
<VRTRasterBand dataType="Byte" band="2">
<VRTRasterBand dataType="Byte" band="3">
<VRTRasterBand dataType="Byte" band="4">

<SourceBand>1</SourceBand>
<SourceBand>2</SourceBand>
<SourceBand>3</SourceBand>
<SourceBand>4</SourceBand>


