
TMA4315: Compulsory exercise 3
Group 13: Magnus Liland, Jakob Gerhard Martinussen and Emma Skarstein

23.11.2018

The dataset

We will use a simulated dataset with clustered data. This data is generated from a fitted model to the jsp
dataset in the faraway R-package.

The following variables are made available:

• school: 50 schools, with code 1-50.
• gender: A factor with levels boy, girl.
• social: Social class of the father, categorical. Original class 1-2 = S1, 3-4 = S2, 5-6 = S3 and 7-9 =

S4 Note that these are not ordered and S1 is not necessarily higher or lower class than S2!
• raven: Test score (centered around 0).
• math: Math score (centered around 0).

We will use math as response, and group the data by school.
dataset <- read.table("https://www.math.ntnu.no/emner/TMA4315/2018h/jsp2.txt", header = TRUE)

The number of schools is 49, as we omit school number 43 due to the lack of measurements for our particular
subset.

Analysis

a) Fitting a linear model

Visualizing the dataset

First we want to explore the dataset. We will group the data based on gender and only include covariates
social, raven, and math.
library(GGally)
ggpairs(

data = dataset,
mapping = aes(col = gender, alpha = 0.7),
columns = c("social", "raven", "math"),
legend = 1,

)
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Some observations can be made:

• A positive correlation can be observed between raven and math score for both genders, although the
correlation is marginally stronger for boys. The Raven test measures abstract reasoning capabilities, so
this makes intuitive sense.

• Girls perform, on average, better than boys on the math test. The weakest math students are mainly
boys, and the strongest math students are mainly girls, as well.

Fitting a linear model

We will now fit a linear model with math as response, and raven and gender as covariates. The model for
the kth student is therefore

Yk = xT
kβββ + εk

where we assume that the εks are independent (between students), and have mean 0 and variance σ2 for all
students. Some explanations for the terms in the model:

• Yk is the math score response for student k. It is assumed to be normally distributed with mean xkβββ
and variance σ2.

• xk is a 3× 1 covariate vector for student k. For instance, if student k is a boy with raven score 5,
then xk = [1, 5, 0]T. Observe that xk0 is always 1, since this covariate “represents” the intercept of the
model.

• βββ is the regression coefficients of the fitted model. βββ = [βintercept, βraven, βgender]T. For example, you
would expect a given student to improve their math score by βraven if the student improves their raven
score by one, everything else being equal.
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• εk is the error in the modelled relationship for student k. The important part here is that εk is assumed
to be independently and identically distributed with mean 0 and variance σ2 for all students.

Now let’s estimate the regression coefficients of this linear model and inspect its summary:
model <- lm(math ~ raven + gender, data=dataset)
summary(model)

##
## Call:
## lm(formula = math ~ raven + gender, data = dataset)
##
## Residuals:
## Min 1Q Median 3Q Max
## -20.6704 -1.8791 0.1166 2.1166 19.6134
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.3131 0.2024 -6.488 1.29e-10 ***
## raven 0.1965 0.0240 8.188 6.98e-16 ***
## gendergirl 2.5381 0.2807 9.041 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.76 on 1151 degrees of freedom
## Multiple R-squared: 0.1105, Adjusted R-squared: 0.109
## F-statistic: 71.5 on 2 and 1151 DF, p-value: < 2.2e-16

The parameter estimates seem to be significant. We have β ≈ [−1.3131, 0.1965, 2.5831]T. A girl is expected to
achieve ~2.5 additional math points compared to a boy with the same number of raven points. Additionally,
a student is expected to score ~0.2 additional math points for every raven point he or she achieves.

We can rewrite this model as two separate models, one for boys and one for girls, making these relationships
clear. For boys

Yk = 0.1965 · xk,raven − 1.3131,

and likewise for girls

Yk = 0.1965 · xk,raven + 1.225.

Making the statistical advantage of female students apparent.

With this model we investigate how two different factors affect the mathematical capabilities of a student.
The first of these factors is gender. Gender does indeed seem to have a significant effect, as girls seem to
achieve better math scores than boys. Secondly, there is a positive correlation between the performing well
on the “Raven” test and the mathematics test. As the Raven test measures abstract, cognitive capabilities,
this comes at no large surprise.
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b) Fitting a random intercept model

Explanation of the model

We will now fit a random intercept model with school as the random intercept. For school i we study the
measurement model:

Yi = Xiβ + 1γ0i + εi

We denote the number of students in school i as ni, often called a cluster. Here follows some explanations
of the different parts of the model:

• Yi is the ni × 1 response vector for school i, containing the math scores of each student enrolled in
that school.

• Xi is the ni × 3 design matrix of the model, containing “population covariates” for each school is
student on each row.

• The 3× 1 vector β contains the fixed effects of the model. These “population effects” are common
amongst all the schools.

• The ni × 1 vector 1γ0i contains the random effects of the model. Specifically in this case, since we
have fitted a random intercept model, we have a random intercept and no random slope. 1 is a ni× 1
vector containing solely ones, while γ0i ∈ IR. With other words, 1γ0i = [γ0i, ..., γ0i]T.

• The ni × 1 vector εi contains the random errors in the model prediction.

It is important to note that we have made the following distributional assumptions:

• γ0i ∼ N1(0, τ2
0 ), where τ2

0 is a scalar which must be estimated.
• εi ∼ Nni(0, σ2I), where σ2, the variance, also must be estimated.

We have also assumed that there is zero correlation between responses in different clusters, and we only have
intraclass correlation. With other words, Cov(Yij , Ykl) = 0 for i 6= k.

Fitting the model

We will now fit this model for our dataset using the lmer function from the lem4 R-package, and print a
summary of this fitted model:
library(lme4)
fitRI1 <- lmer(

math ~ raven + gender + (1 | school),
data = dataset,

)
summary(fitRI1)

## Linear mixed model fit by REML ['lmerMod']
## Formula: math ~ raven + gender + (1 | school)
## Data: dataset
##
## REML criterion at convergence: 6772.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.4607 -0.4305 -0.0127 0.4083 4.2761
##
## Random effects:
## Groups Name Variance Std.Dev.
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## school (Intercept) 3.879 1.969
## Residual 19.220 4.384
## Number of obs: 1154, groups: school, 49
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -1.26915 0.34375 -3.692
## raven 0.21442 0.02331 9.197
## gendergirl 2.51119 0.26684 9.411
##
## Correlation of Fixed Effects:
## (Intr) raven
## raven -0.017
## gendergirl -0.404 0.034

Comparing the models

We can now compare this random intercept model with the classical linear model in section a). First observe
that βraven has changed from 0.1965 to 0.2144. The random intercept model has therefore concluded that
raven score has a even stronger effect upon the math score of the pupils. For every additional raven score, a
student is predicted to score 0.2144 more on the math test, everything else being equal.

Also βgender has changed from 2.5381 to 2.5312. The random intercept model therefore concludes that
gender has less of an impact on predicted math score compared to the classical linear model. The difference
is relatively small though, so the models can be said to have similar conclusions regarding gender. A girl is
predicted to score 2.5312 more than a boy with the otherwise identical covariate attributes.

Hypothesis testing

Observe that the output of summary(fitRI1) does not contain any p-values, as we have grown accustomed
to with the lm and glm models. This is intentionally omitted by the lme4 library authors, as there are a lot
of “gotchas” related to the calculation of p-values for parameter estimations wrt. linear mixed models.

Quoting “Fitting Linear Mixed-Effects Models Using lme4” by Bates, Bolker, Mächler and Walker (2015) in
Journal of Statistical Software (p. 35):

While the null distributions (and the sampling distributions of non-null estimates) are asymp-
totically normal, these distributions are not t distributed for finite size samples – nor are the
corresponding null distributions of differences in scaled deviances F distributed.

The T -distribution can therefore not be used for a hypothesis test for finite size samples without making a
lot of assumptions which might render the conclusion invalid.

A rationalization can also be found the email thread “lmer, p-values and all that” written by Douglas Bates,
the author of the lme4 R-package.

We will now ignore all these wise words, arguing that our sample size is large enough and well-behaved, and
still calculate a p-value for the following hypothesis test.

H0 : βraven = 0 vs. H1 : βraven 6= 0

With other words, we want to find out how probable it is that a student’s raven score has absolutely no effect
on the math score of the same student. We will perform this test using the asymptotic (normal) distribution
of βraven.

We construct the following test statistic:
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z = β̂raven − 0
ŝe(βraven)

Under the null hypothesis, we assume this test statistic to have a asymptotic standard normal distribution:

Z ∼ N1(0, 1)

We now want to calculate a two-sided z-test:

p = 2 · Pr(Z ≥ |z|)

We can calculate the test statistic manually:
coefficients <- summary(fitRI1)$coefficients
betaRavenHat <- coefficients[2, 1]
standardErrorRavenHat <- coefficients[2, 2]
ZStatistic <- (betaRavenHat - 0) / standardErrorRavenHat
pValue <- 2 * pnorm(q=abs(ZStatistic), mean=0, sd=0, lower.tail=FALSE)
pValue

## [1] 0

Or by retrieving the t-value directly:
tValue <- coefficients[2, 3]
pValue <- 2 * pnorm(q=abs(tValue), mean=0, sd=0, lower.tail=FALSE)
pValue

## [1] 0

Alternatively, we can use the lmerTest R-package which provides p-values in the lmer summary output:
library(lmerTest)
fitRI1Test <- lmer(

math ~ raven + gender + (1 | school),
data = dataset,

)
summary(fitRI1Test)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: math ~ raven + gender + (1 | school)
## Data: dataset
##
## REML criterion at convergence: 6772.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.4607 -0.4305 -0.0127 0.4083 4.2761
##
## Random effects:
## Groups Name Variance Std.Dev.
## school (Intercept) 3.879 1.969
## Residual 19.220 4.384
## Number of obs: 1154, groups: school, 49
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##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -1.26915 0.34375 66.69659 -3.692 0.00045 ***
## raven 0.21442 0.02331 1143.53881 9.197 < 2e-16 ***
## gendergirl 2.51119 0.26684 1130.21403 9.411 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) raven
## raven -0.017
## gendergirl -0.404 0.034

All three methods yield the same result, we can relatively confidently assume raven scores to have an impact
on math scores.

We can also construct a 95% confidence interval for the effect of the female gender on the math score, using
the Wald approximation for fixed effects:
confint(fitRI1, method='Wald')[5,]

## 2.5 % 97.5 %
## 1.988188 3.034185

Since the entirety of the 95% confidence interval is contained by IR+, we can confidently conclude that girls
perform better on the math test compared to boys.

c) Random intercept model without gender covariate

We now fit a random intercept model, still clustered by school, but without gender as a fixed effect.
fitRI2 <- lmer(math ~ raven + (1 | school), data=dataset)

Covariance and correlation calculations

The covariance between response Yij and Yil from the same school i has the following form:

Cov(Yij , Yil) =
{
τ2

0 , if j 6= l

τ2
0 + σ2 , if j = l

Recall that τ2
0 is the variance of the normally distributed random intercept, γ0i, and that σ2 is the variance

of the error term εij , also normally distributed.

Also interest, notice the compound symmetry of this expression. The intraclass correlation can now be simply
derived as:

Corr(Yij , Yil) = τ2
0

τ2
0 + σ2 , j 6= l.

We can retrieve these values from the summary of our fit:
summary(fitRI2)
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## Linear mixed model fit by REML ['lmerMod']
## Formula: math ~ raven + (1 | school)
## Data: dataset
##
## REML criterion at convergence: 6856.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.2705 -0.4725 -0.0045 0.4603 4.4890
##
## Random effects:
## Groups Name Variance Std.Dev.
## school (Intercept) 4.002 2.001
## Residual 20.711 4.551
## Number of obs: 1154, groups: school, 49
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.03840 0.32071 0.120
## raven 0.20682 0.02418 8.554
##
## Correlation of Fixed Effects:
## (Intr)
## raven -0.004

For our specific model fit we have τ̂2
0 = 4.002 and σ̂2 = 20.711. Inserting this into the correlation formula

yields Corr(Yij , Yil) ≈ 0.162. Such a correlation calculation will always yield a positive correlation, due to
model assumptions.

In this case we observe a somewhat weak positive correlation, but not necessarily insignificant. There is good
reason to believe that if one student performs well at a school, others will do as well, and vice versa. This
can be explained by school resources, social climate, knowledge sharing, and a multitude of other factors.

Random intercept parameter prediction

The formula for γ0i in the random intercept model is

γ̂0i = niτ̂
2
0

σ̂2 + niτ̂2
0
ei,

ei is here the average residual of the predictions rendered by the systematic effects of the model (for school
i):

ei := 1
ni

ni∑
j=1

(Yij − xTijβ̂).

We can interpret the formula for γ0i as a weighted sum between the conditional expectation 0 and the average
residual ei, the weight being:

niτ̂
2
0

σ̂2 + niτ̂2
0

Some notes regarding the weighting:
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• niτ̂
2
0 is the predicted intraclass covariance weighted by the number of observations in that class. The

more observations, the greater credence can be given to the predicted correlation.
• σ̂2 is the variance observed in the entire population. If this value is large, it is difficult to distinguish

genuine large correlations from random effects arising from large variance.
• The weighting therefore represents the intraclass covariance as a fraction of the population variance.
• If σ̂2 grows large compared to niτ̂2

0 , population variance dominates intraclass correlation. There is
therefore good reason to believe that the intercept should not be set too hight for the class, and the
weight approaches 0.

• Oppositely, the weight approaches 1 if intraclass correlation dominates. The intercept is therefore set
to the average of the residuals, since all of them can be explained by a normal distribution around the
class’ intercept.

Visual analysis

Now we will use the ggplot2 R-package in order to inspect model fit and if the model’s assumptions are
satisfied or not.

QQ-plot of random intercepts

We start of by using the plot_model function from the sjPlot package in order to check model assumptions.
library(ggplot2)
library(sjPlot)
library(ggpubr)
gg1 <- plot_model(fitRI2, type = "diag", prnt.plot = FALSE, geom.size = 1)
gg1[[2]]$school + ggtitle("QQ-plot of random intercepts")
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This plot QQ-plot can be used to check if the assumption of normal distribution of the random intercept is
satisfied. We expect these data points to lie along the same line, and taking the confidence intervals into
account, all of the intercepts besides the left outlier does. All over, this can be considered to satisfy our
normal distribution assumption.

Sorted random intercepts plot

Now we plot the random effects of the model, i.e. the random intercepts of each school, sorted by intercept
value.
gg2 <- plot_model(fitRI2, type = "re", sort.est = "(Intercept)", y.offset = 0.4, dot.size = 1.5) +

theme(axis.text.y = element_blank(), axis.ticks.y = element_blank()) +
labs(title = "Random intercept (RI)", x = "school", y = "math")

gg2
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Here we expect a normal distribution with mean zero. With other words, most of the intercepts should be
clustered around 0, and should be distributed symmetrically around 0. Again, this seems to be somewhat
satisfied, with a close to 50/50 split of negative and positive intercepts.

Density plot of random intercept

Now we plot a density plot of the predicted values γ̂0i. We compare this observed density plot with the
theoretical asymptotic density of γ0i using the dnorm function. Here we use τ̂0 for the standard deviation of
the theoretical density.
gg3 <- ggplot(data = data.frame(x = ranef(fitRI2)$school[[1]]), aes(x = x)) +

geom_density() +
labs(x = "math", y = "density", title = "Density of RI") +
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stat_function(
fun = dnorm,
args = list(mean = 0, sd = attr(VarCorr(fitRI2)$school, "stddev")),
col = "red",

)
gg3
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Although the observations seem to form a bell curve, as expected, we all observe minor negative skew in the
predicted slopes. With other words, we observe a bit too many schools that perform quite badly.

Small note: research on high schools in Brazil have observed a long tail power law to be applicable for the
distribution of high school performance.

Residuals plotted against fitted values

Now we plot the residual values against the fitted values:
df <- data.frame(fitted = fitted(fitRI2), resid = residuals(fitRI2, scaled = TRUE))
gg4 <- ggplot(df, aes(fitted,resid)) +

geom_point(pch = 21) +
geom_hline(yintercept = 0, linetype = "dashed") +
geom_smooth(se = FALSE, col = "red", size = 0.5, method = "loess") +
labs(x = "Fitted values", y = "Residuals", title = "Residuals vs Fitted values")

gg4
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We have made the classical distributional assumption that the error terms εi are identically and independently
distributed with mean 0 and common variance σ2. We should therefore observe no discernible trend wrt.
the fitted values. Here we use the (standardized) residuals as estimators for the error terms, and check this
assumption.

Luckily, the residuals seem to be symmetrically distributed around 0 and no clear trend is visible.

QQ-plot of standardized residuals

In order to check the normality of the residuals, instead of only independence and mean 0 as in the previous
plot, we now render a QQ-plot of the standardized residuals.
gg5 <- ggplot(df, aes(sample=resid)) +

stat_qq(pch = 19) +
geom_abline(intercept = 0, slope = 1, linetype = "dotted") +
labs(x = "Theoretical quantiles", y = "Standardized residuals", title = "Normal Q-Q")

gg5
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Arguably, the residuals portray normal (as in distribution) behaviour, and we are relatively confident in our
assumption of εi ∼ N(0, σ2).

Visualizing the predicted random intercepts

We now plot the regression curves for every single school.
df <- data.frame(

x = rep(range(dataset$raven), each = 49),
y = coef(fitRI2)$school[,1] + coef(fitRI2)$school[,2] * rep(range(dataset$raven), each = 49),
School = factor(rep(c(1:42, 44:50), times = 2))

)
ggplot(df, aes(x = x, y = y, col = School)) +

geom_line() +
geom_hline(yintercept=0, linetype='solid', color='grey') +
geom_vline(xintercept=0, linetype='solid', color='green') +
labs(x = "raven score", y = "math score")
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These lines represent the model predictions split by school, depending on the raven score of the student.

As you can see, all the schools have identical slopes but different intercepts, as expected for a random intercept
model.

The green slice representing raven = 0 shows the intercept values for each school, and it is these values
that have been discussed thoroughly in previous plots. You could therefore argue that this plot is somewhat
redundant, but it offers a clear picture of all of the 49 “sub-models”, one for each school.

Again, the intercepts seem to be relatively symmetric around 0, and the badly performing school clearly
appears as an outlier in this plot.

d) Expanding the model

Adding social status of father as a fixed effect

We now include the social status of the father of the students as a fixed effect, and compare this expanded
model with the previous “sub-model”.
fitRI3 <- lmer(math ~ raven + social + (1 | school), data = dataset)
anova(fitRI2, fitRI3)

## refitting model(s) with ML (instead of REML)

## Data: dataset
## Models:
## fitRI2: math ~ raven + (1 | school)
## fitRI3: math ~ raven + social + (1 | school)
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## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## fitRI2 4 6858.9 6879.1 -3425.4 6850.9
## fitRI3 7 6856.8 6892.1 -3421.4 6842.8 8.1175 3 0.04364 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note: Observe that anova reports “refitting model(s) with ML (instead of REML)” when invoked with lmer
fitted mixed effects models. The reason for this is that lmer uses the restricted maximum likelihood
method to determine the model parameters instead of the classical maximum likelihood method. REML
is used because it is less downwards biased than ML. The problem with REML is that two different covariate
structures will result in different mean structures. This causes the log-likelihoods to be based on different
observations, and the assumptions of ANOVA are therefore not applicable anymore. This is “solved” by
refitting the models with the ML method instead, before comparing them with ANOVA analysis.

The addition of social status to the model seems not to have a great impact on the log-likelihood of the
model fit. The BIC and AIC heuristics also seem to disagree on which model to choose in this case, with the
model fitRI2 yielding the smallest BIC and fitRI3 yielding the smallest AIC. This is no big surprise, since
the BIC penalizes more for higher complexity. Since the AIC and BIC don’t lead to any obvious preference,
we would opt for the simpler model in order to prevent overfitting. This is an opinion loosely held, though.

Adding a random slope to the model

We now add a random slope for the raven score at each school, in addition to the random intercept to the
model,

Formulae for random intercept and slope

The cluster specific formula for the random intercept and slope model is as follows:

Yi = Xiβ + Uiγi + εi

Written more explicitly for our model:

Yi = 1βintercept + xi, ravenβraven + 1γi0 + xi, ravenγi,raven + εi

Fitting the new model

We can now fit this new model and print a summary.
fitRIS <- lmer(math ~ raven + (1 + raven | school), data = dataset)
summary(fitRIS)

## Linear mixed model fit by REML ['lmerMod']
## Formula: math ~ raven + (1 + raven | school)
## Data: dataset
##
## REML criterion at convergence: 4537.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.87462 -0.66206 -0.03913 0.65818 3.09716
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
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## school (Intercept) 0.5519 0.7429
## raven 0.7293 0.8540 -0.40
## Residual 2.2094 1.4864
## Number of obs: 1154, groups: school, 49
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.2603 0.1183 2.200
## raven 0.2498 0.1223 2.042
##
## Correlation of Fixed Effects:
## (Intr)
## raven -0.356

The estimated variance of this random slope, 0.7293, is quite a lot more than we expected. Schools vary
drastically when it comes to the ability to transfer students capabilities in the raven test over to the math
test, according to our model.

Visualizing sub-models for each school

These different slopes and intercept for each school in this new model can be visualized as follows:
df <- data.frame(

x = rep(range(dataset$raven), each = 49),
y = coef(fitRIS)$school[,1] + coef(fitRIS)$school[,2] * rep(range(dataset$raven), each = 49),
School = factor(rep(c(1:42, 44:50), times = 2))

)
gg1 <- ggplot(df, aes(x = x, y = y, col = School)) +

geom_line()
gg1

16



−40

−20

0

20

−20 −10 0 10

x

y
School

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

44

45

46

47

48

49

50

The variance of the intercepts have been greatly reduced, and much of the differences between schools are
now attributed to different slopes instead.

Visualizing distribution of random intercepts and slopes

We can also visualize the values for the predicted intercepts and slopes of this mixed effects model:
gg2 <- plot_model(fitRIS, type = "re", sort.est = "(Intercept)", y.offset = 0.4, dot.size = 1.5) +

theme(axis.text.y = element_blank(), axis.ticks.y = element_blank()) +
labs(title = "Random intercept (RI)")

gg2
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raven school (Intercept)

−3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3

Random intercept (RI)

Again, we observe relative symmetric distribution around 0 for both prediction types, as assumed.

e) Modelling probability to fail in maths

Let’s say that we now want to model the probability for a student to fail maths. A linear mixed effect model
is not suited for this task, since the linear model predicts specific numerical scores on the real number interval
[−∞,∞].

We are now interested in predicting a probability ranging from 0 to 1 instead. A more fitting random
component for such a model would therefore be

yij ∼ Bin(1, πij),

i.e. a binomial distribution with probability 1 − πij to fail in maths. This requires us to fit a generalized
linear mixed effect model, where we pre-process the math score such that it is dichotomized based on the
failing grade cut-off:

yij =
{

0, if failing score
1, else

In order to introduce a random school intercept into the model, we choose a fitting link function g(πij), for
example the logit link function, such that:

g(πij) = Xijβ + γ0i
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With γ0i having the same properties as explained before.

Such a model is not without its intrinsic difficulties, though. One of the main problems is the derivation of a
marginal probability distribution for the model

f(yij) =
∫
γi

f(yij |γi)f(γi)dγi.

The integral of an integrand consisting of the product of a binomial and a normal distribution is not known
to us, and thus we face analytical difficulties. Other numerical techniques are required, and is out of scope
for this course.
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