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Abstract

Maxwell’s equations are introduced and a numerical method for obtaining an approximate solution to

these equations is presented. The stability and consistency is discussed, and the convergence of the method is

asserted. The resulting numerical method, commonly known as the "Yee method" or "Finite Difference Time

Domain Method", is shown to behave nicely and approach analytical reference solutions as the temporal and

spatial stepsizes decrease. The convergence in space is shown to be of order 2, while the convergence in time

is shown to be of order 1. The latter of these results is not in line with what would be expected from the

theory and is therefore discussed in more detail.

INTRODUCTION

Maxwell’s equations are the fundamental equations

of electromagnetism and model the behaviour of elec-

tromagnetic waves as they move through time and

space. The equations simplify considerably for free

space with no charge- or current densities, which is

what will be considered here. This leads to equa-

tions where the derivative of one field component can

be expressed in terms of the derivative of the other

field’s components. The derivatives are approximated

by the use of central differences and combined into

a discretization scheme known as the "Yee method".

Several different problem instances will be investi-

gated with the method.

THEORY

2.1 Maxwell’s equations

Maxwell’s equations in three dimensions, using Gaus-

sian units [3], are

∂ B
∂ t
= −c∇× E, (1a)

�

4πJ+
∂ E
∂ t

�

= c∇×B, (1b)

∇ ·B= 0, (1c)

∇ · E= 4πρ. (1d)

We will make several simplifying assumptions re-

garding these equations. Firstly, it can be shown that

as long as (1c) and (1d) are satisfied for any t = t0,

it will be satisfied for all other t [2]. The numerical

scheme will only be concerned with (1a) and (1b),

and assume that (1c) and (1d) are satisfied for the

chosen initial conditions. We also assume there to be

zero electric charge (ρ) and current (J) density. This

yields a simplified system of equations,

∂ Bx
∂ t
= −c

�

∂ Ez
∂ y
−
∂ Ey

∂ z

�

(2a)

∂ By

∂ t
= −c

�

∂ Ex
∂ z
−
∂ Ez
∂ x

�

(2b)

∂ Bz
∂ t
= −c

�∂ Ey

∂ x
−
∂ Ex
∂ y

�

(2c)

∂ Ex
∂ t
= c

�

∂ Bz
∂ y
−
∂ By

∂ z

�

(2d)

∂ Ey

∂ t
= c

�

∂ Bx
∂ z
−
∂ Bz
∂ x

�

(2e)

∂ Ez
∂ t
= c

�∂ By

∂ x
−
∂ Bx
∂ y

�

(2f)

The equations can be simplified to the one-

dimensional case by assuming that the two fields are

functions of only x , and choosing the z-axis to be co-

inciding with the electric field component. This gives

Page 1 of 9



TMA4212 Student Project Page 2 of 9

−
∂ B
∂ t
= c

�

�

�

�

�

�

�

ex ey ez
∂
∂ x 0 0

0 0 Ez

�

�

�

�

�

�

�

= −c
∂ Ez
∂ x

ey , (3a)

∂ E
∂ t
= c

�

�

�

�

�

�

�

ex ey ez
∂
∂ x 0 0

0 By 0

�

�

�

�

�

�

�

= c
∂ By

∂ x
ez , (3b)

which simplifies to

∂ By

∂ t
= c
∂ Ez
∂ x

, (4a)

∂ Ez
∂ t
= c
∂ By

∂ x
. (4b)

2.2 Yee’s discretization scheme

One can observe that the time derivative of each field

is entirely determined by the spatial derivatives of

the other field. This fact is utilized in the numerical

scheme, as it is only necessary to know the value of

one of the fields when calculating the other. The cal-

culated magnetic field nodes are offset by one half

time-step relative to the electric field nodes, never

calculating both fields at the exact same time. This

saves a factor of two in computational effort.

Using second order approximations of the partial

derivatives in time and space, one obtains the follow-

ing update equations:

By
�

�

n+ 1
2

m+ 1
2
= By

�

�

n− 1
2

m+ 1
2
+ cp

�

Ez
�

�

n
m+1 − Ez

�

�

n
m−1

�

, (5a)

Ez
�

�

n+1
m = Ez

�

�

n
m + cp

�

By
�

�

n+ 1
2

m+ 1
2
− By

�

�

n+ 1
2

m− 1
2

�

. (5b)

The scheme was first proposed by Yee [7] in 1966,

and a grid explaining the scheme is shown in figure

1.

x

t

h

k

n+ 1

n

n− 1

n+ 1/2

n− 1/2

m
m+ 1/2

m+ 1
m− 1/2

m− 1

Ez By

Figure 1: Yee’s discretization scheme in one dimension.
Each grey rectangle is one basic grid unit. Update equation
(5b) for the electric field is visualized.

The same approach can be applied for the three-

dimensional case, where equations (2a - 2c) are dis-

cretized in order to update the magnetic field, and

likewise for equations (2d - 2f) for the electric field.

This gives the following update equations

Bx
�

�

n+ 1
2

i, j+ 1
2 ,k+ 1

2
= Bx

�

�

n− 1
2

i, j+ 1
2 ,k+ 1

2
− cp

�

Ez
�

�

n
i, j+1,k+ 1

2
− Ez

�

�

n
i, j,k+ 1

2
−
�

Ey
�

�

n
i, j+ 1

2 ,k+1
− Ey

�

�

n
i, j+ 1

2 ,k

��

, (6a)

By
�

�

n+ 1
2

i+ 1
2 , j,k+ 1

2
= By

�

�

n− 1
2

i+ 1
2 , j,k+ 1

2
− cp

�

Ex
�

�

n
i+ 1

2 , j,k+1
− Ex

�

�

n
i+ 1

2 , j,k
−
�

Ez
�

�

n
i+1, j,k+ 1

2
− Ez

�

�

n
i, j,k+ 1

2

��

, (6b)

Bz
�

�

n+ 1
2

i+ 1
2 , j+ 1

2 ,k
= Bz

�

�

n− 1
2

i+ 1
2 , j+ 1

2 ,k
− cp

�

Ey
�

�

n
i+1, j+ 1

2 ,k
− Ey

�

�

n
i, j+ 1

2 ,k
−
�

Ex
�

�

n
i+ 1

2 , j+1,k
− Ex

�

�

n
i+ 1

2 , j,k

��

, (6c)

Ex
�

�

n+1
i+ 1

2 , j,k
= Ex

�

�

n
i+ 1

2 , j,k
+ cp

�

Bz
�

�

n+ 1
2

i+ 1
2 , j+ 1

2 ,k
− Bz

�

�

n+ 1
2

i+ 1
2 , j− 1

2 ,k
−
�

By
�

�

n+ 1
2

i+ 1
2 , j,k+ 1

2
− By

�

�

n+ 1
2

i+ 1
2 , j,k− 1

2

��

, (6d)

Ey
�

�

n+1
i, j+ 1

2 ,k
= Ey

�

�

n
i, j+ 1

2 ,k
+ cp

�

Bx
�

�

n+ 1
2

i, j+ 1
2 ,k+ 1

2
− Bx

�

�

n+ 1
2

i, j+ 1
2 ,k− 1

2
−
�

Bz
�

�

n+ 1
2

i+ 1
2 , j+ 1

2 ,k
− Bz

�

�

n+ 1
2

i− 1
2 , j+ 1

2 ,k

��

, (6e)

Ez
�

�

n+1
i, j,k+ 1

2
= Ez

�

�

n
i, j,k+ 1

2
+ cp

�

By
�

�

n+ 1
2

i+ 1
2 , j,k+ 1

2
− By

�

�

n+ 1
2

i− 1
2 , j,k+ 1

2
−
�

Bx
�

�

n+ 1
2

i, j+ 1
2 ,k+ 1

2
− Bx

�

�

n+ 1
2

i, j− 1
2 ,k+ 1

2

��

. (6f)
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The spatial nodes used by the scheme are shown

visually in figure 2a.

For 8 spatial nodes placed at the vertices of a Yee

cube (see figure 2a) there are 8 nodes × 2 fields ×
3 components = 48 field components. Only three of

these field components are calculated for a given time

step. This saves a factor of 16 in computational effort

without loss of accuracy. The more naive approach

of calculating all components would be equivalent to

running 16 Yee schemes in parallel. More accuracy is

gained by decreasing step sizes instead of caculating

more components.

The three dimensional grid is constructed in such

a way that the faces are symmetric and contain two

tangential electric field components and one normal

magnetic field component. This is illustrated in figure

2b.

2.3 Consistency

The method is consistent if the truncation error τn
m→

0 as h, k → 0 for all indexes n and m. The trunca-

tion error can be obtained by Taylor expanding the

components in (4b) and setting c = 1,

∂ Ez
�

�

n+ 1
2

m

∂ t
=

1
k

�

Ez
�

�

n+1
m − Ez

�

�

n
m

�

+O (k2), (7a)

∂ By
�

�

n+ 1
2

m

∂ x
=

1
h

�

By
�

�

n+ 1
2

m+ 1
2
− By

�

�

n+ 1
2

m− 1
2

�

+O (h2).

(7b)

Equation (4b) gives that (7a) equals (7b) for c = 1.

Equating the rigth hand sides of (7) yields

Ez
�

�

n+1
m = Ez

�

�

n
m+

h
k

�

By
�

�

n+ 1
2

m+ 1
2
−By

�

�

n+ 1
2

m− 1
2

�

+O (k3+kh2).

(8)

Hence, the truncation error is

kτn
m = O (k

3 + kh2), (9)

and thus we have consistency.

The same approach can be used to prove consis-

tency in three dimensions. Setting c = 1 and using

Taylor expansion on the components in (2) as in (7),

shows that the update equations for three dimensions

(6) also have an truncation error of O (k3+ kh2). The

derivation goes along the same lines as above and is

left out for brevity’s sake.

2.4 Numerical stability

The CFL-condition provides a necessary condition for

stability. In the one dimensional explicit case the

condition can be formulated as

ck
h
= cp ≤ 1. (10)

In three dimensions the CFL-condition is

k
�

vx
∆x
+

vy

∆y
+

vz
∆z

�

≤ 1. (11)

Assuming a uniform discretization grid with stepsize

h yields

k · 3
c/
p

3
h
=
p

3pc ≤ 1. (12)

This requirement also makes sense intuitively.

Having the numerical method move in space can

not be done if the information moving in time is

not allowed to catch up. The number required to

be bounded is known as the Courant number. In or-

der to prove stability of the Yee scheme one needs a

sufficient condition. In order to allow a more com-

pact notation, the electric and magnetic fields will be

represented in one single, complex vector field

Un
i, j,k = Bn

i, j,k + ı̂En
i, j,k, (13)

where ı̂ =
p
−1. Now the two first Maxwell equations

(1a) and (1b) can be rewritten as one single equation,

cı̂∇×U=
∂U
∂ t

. (14)

Now we decompose the finite difference-scheme into

separate time and space eigenvalue problems,

cı̂∇×
�

�

numericalU
n
i, j,k = λUn

i, j,k, (15a)

∂

∂ t

�

�

numericalU
n
i, j,k = λUn

i, j,k. (15b)

This decomposition, first proposed by Taflove [1],
corresponds to the plane-wave eigenmodes of the EM-

wave. We achieve stability if all such wave modes

are bounded as time tends to infinity [6]. A stable

range for λ in (15) will be determined which can

guarantee this. Let’s first look at the time eigenvalue
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Figure 2
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Ey

Ez

Bx

Bz

By

(a) Yee’s discretization scheme in three dimensions. Each grey
cube is one basic grid unit, where each cube have the same vari-
ables calculated in each node as shown on the middle cube. As
in one dimension, only one of the fields are present at each time
level.

x
yz

EzandEx

EzandEy

Ex andEy

h
h

h
(b) The boundaries of a (5 × 5 × 5) domain. None of the field
components actually has the given dimension. In this case the di-
mensions are Ex (4×5×5), Ey (5×4×5), Ez(5×5×4), Hx (5×4×4),
H y (4× 5× 4) and Hz(4× 4× 5).

problem (15b), inserting our numerical scheme on

the left hand side

Un+1/2
i, j,k −Un−1/2

i, j,k

k
= λUn

i, j,k. (16)

Now define a solution growth factor

ξi, j,k =
Un+1/2

i, j,k

Un
i, j,k

=
Un

i, j,k

Un−1/2
i, j,k

. (17)

Inserting (17) into (16) and solving the quadratic

equation for ξi, j,k gives

ξi, j,k = a±
p

a2 + 1, where a =
λk
2

(18)

Now we require |ξi, j,k| ≤ 1 for all possible modes

in the grid (i, j, k). This is satisfied when a is purely

imaginary and bounded between −ı̂ and ı̂, which im-

poses the following stability constraint on the eigen-

values

−
2ı̂
k
≤ λ≤

2ı̂
k

. (19)

Now let’s analyse the space eigenvalue problem (15a)

using von Neumann stability analysis. Apply a Fourier-

transform to an instantaneous time step n of the spa-

tial grid to provide an alternative representation,

Un
i, j,k = U0e ı̂h(βx i+βy j+βzk). (20)

Using the central differences from the Yee scheme to

approximate the spatial derivatives of the curl opera-

tor, one can rewrite (15a) as

−
2c
h

�

sin(βx h/2), sin(βyh/2), sin(βzh/2)
�ᵀ

×Un
i, j,k = λUn

i, j,k. (21)

The sinusoidal terms arise from the application of

Euler’s identity. Performing the cross product yields a

system of three equations which then is solved for λ

λ= −
2ci
h

Ç

sin2(βx h/2) + sin2(βyh/2) + sin2(βzh/2).
(22)

For all βx , βy , and βz we have that

−
p

3ı̂
h
≤ λ≤

p
3ı̂
h

. (23)

In order to still guarantee |ξi, j,k| ≤ 1, i.e. numerical

stability for an arbitrary spatial mode, the radius of

the spatial eigenvalues (23) needs to be contained

completely within the range of temporal eigenvalues

(19) [6]. This gives an upper bound on the time step

k ≤
h
p

3c
. (24)

The necessary CFL stability criterion is therefore also

a sufficient one. Combined with numerical consis-

tency this implies convergence, according to the Lax’

equivalence theorem [4].
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(a) Pulse initialized by additive source in spacial index 33. Per-
fect conductors as boundaries. Additive source: Ez[33] +=
exp(−(t − 30)2/100).
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(b) Pulse initialized by additive source in spatial index 33. Ab-
sorbing boundary conditions. Additive source: Ez[33] +=
exp(−(t − 30)2/100).
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(c) Infinite sinusoidal wave obtained by use of periodic boundary
conditions. Initial conditions: Ez = sin(2πx), By = − sin(2πx).
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(d) Standing wave obtained by setting initial magnetic field to
zero and use of periodic boundary conditions. Initial conditions:
Ez = sin(2πx), By = 0.

Figure 3: Waterfall plots of electric field using an additive source or specific initial conditions and different boundary
conditions.
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NUMERICAL EXPERIMENTS

The method described in (5) is used to approximate

solutions to problems with given initial conditions

and boundary conditions in one dimension. Solutions

corresponding to a selection of different initial condi-

tions and boundary conditions are displayed by use

of waterfall plots in figure 3.

The update equations in (6) are used to obtain

solutions for different initial and boundary conditions

in three dimensions. Plots showing the results are

displayed in figure 4 as slices, and in figure 5 as snap-

shots. The slices can be thought of as planes slicing

the domain in the middle of the considered z - inter-

val.

The sinusoidal wave in figure 4a is a numerical

solution that is well-behaved and closely resembles

the analytical solution. This problem doesn’t seem to

possess properties that makes the numerical method

behave in an irregular way. It is therefore used to

obtain convergence plots. The sinusoidal wave por-

trayed in figure 4b and 5a is not traveling along one

axis exclusively and shows some clear deviation from

the analytical solution. The numerical artifacts ob-

servable when simulating waves traveling diagonally

relative to the Yee cubes (and by proxy, also the coor-

dinate axes) have been noted by Taflove [6], among

others.

If we set the variations in y- and z-direction to

be zero for the Maxwell relations (1), we obtain that

the electric field Ez can be expressed in the form of

the one-dimensional wave equation. The solution to

this equation can be easily found and is commonly

known as d’Alembert’s solution. An analytical solu-

tion is therefore available for any given set of initial

conditions. This leaves us with a reference solution

which can be used to assert the correctness of the

numerical method in one dimension.

In three dimensions the Maxwell relations can be

used to express the electric field as the solution to a

three dimensional vector wave equation, but finding

a solution satisfying this equation for arbitrary initial

conditions is not done easily. A more convenient ap-

proach for obtaining a three-dimensional reference

solution is simply to "extend" the easily obtainable

one-dimensional solution to three dimensions. This

leaves us with a planar, three-dimensional wave. The

analytical solution for such a wave can be used as

a reference solution when investigating the order of

convergence for the method in three dimensions. The

resulting convergence plots indicate that the method

is of order 2 in space for both one and three dimen-

sions. The convergence is displayed in figure 6a and

6b. These plots are obtained by comparing the numer-

ical results to the reference solution. The results are

in line with what one would expect from looking at

the theoretical global truncation error of the method.

The approach of using an analytical solution as a

reference solution works well when considering con-

vergence in space, but problems arise when attempt-

ing to confirm the expected convergence in time with

the same approach. The method doesn’t seem to im-

prove much relative to the analytical solution when

decreasing the stepsize in time. This seems to be

caused by a combination of two factors. Firstly, vary-

ing degrees of dispersion, and secondly, increasing

deviation from the optimal value of the stepsize ratio,
p

3pc. The optimal value has been shown to be equal

to one in the literature [5]. This is hard to maintain

when constructing a convergence plot. With regards

to dispersion, it has been seen to occur in cases where

the solution is a sinusoidal wave, which is the case for

the problem used when exploring the convergence

of the method. Methods for dealing with dispersion

is discussed in the literature [5], but has not been

prioritized in our implementation.

The problem of not being able to observe con-

vergence when an analytical solution is used as the

reference solution is partly solved by creating a ref-

erence solution from running the numerical method

with very small stepsizes in time. The resulting con-

vergence plots, shown in figure 6a and 6b indicate

that the method is of order 1. This is not in line

with what is expected as the global truncation error

is expected to be O (h2 + k2).

CONCLUSION

The numerical method known as the "Yee method" is

shown to generate a solution in a number of different
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(a) Numerical and analytical solution with periodic bound-
ary conditions and initial condition E = (0,0, sin(2πx)),B =
(0,− sin(2πx), 0). The analytical solution is Ez = sin(2π(x + c t)).
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(b) Numerical and analytical solution with periodic boundary
conditions and initial condition Ez = sin(2π(x + y)), By =
− sin(2π(x + y)). The analytical solution is Ez = sin(2π(x + y −p

2c t)).

Figure 4: Slice plots of solutions in 3D. The colors indicate the amplitude of the Ez-field at the given time and position.
The numbers on the x- and y-axis denotes the grid index, and the numbers on the t-axis denotes the time step.
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(a) Numerical and analytical solution with periodic boundary con-
ditions at time t = 1/5c and initial condition E = (0, 0, sin(2π(x +
y))),B = (0,− sin(2π(x + y)), 0). The analytical solution is
Ez = sin(2π(x + y −

p
2c t)).
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(b) Numerical and analytical solution with periodic bound-
ary conditions at time t = 3/5c and initial condition E =
(0,0, sin(2πx) sin(2πy)), B = (0,0,0). The analytical solution
is Ez = cos(8πc t) sin(2πx) sin(2πy)

Figure 5: Snapshots of numerical and analytical solutions. The x- and y-axis denotes the grid indexes and the z-axis
denotes the amplitude of the Ez-field at the given position and time.
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(a) Convergence plot for the Yee method in one dimension, with
Ez(x) = sin(2π(x − c t)). The space between x0 = 0 and xN = 1
is considered, with time fixed at t = 1/c
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(b) Convergence plot for the Yee method in three dimensions with
Ez = sin(2π(x − c t)). The spatial coordinates are restricted to
values between 0 and 1 with time fixed at t = 1/c.

cases and the associated convergence plots points to

a steady decrease in error. The order of convergence

in space is shown to be of order 2, which is in accor-

dance with the theory. The method fails to agree with

theory when considering the order of convergence in

time. The theory suggest that the convergence should

be of order 2, but plots indicate that the order is 1.

A definite explanation to this problem has not been

found and warrants further exploration. Restrictions

on the number of temporal nodes relative to the num-

ber of spatial nodes, imposed by the CFL-condition,

makes the problem hard to investigate as thoroughly

as desired. Possible explanations could be things such

as decreasing and sub-optimal Courant number and

unexpected implications on time-convergence caused

by the number of spatial steps. Dispersion has also

been observed in some cases, which further compli-

cates the problem. Despite these issues, the method

displays good behaviour in a variety of situations, and

closely the mimics either the analytical solution or

the numerical reference solution when small enough

stepsizes are used.
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