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Problem 1: Regression [6 points]
We start by importing the data set used in this problem.
all <- dget(”https://www.math.ntnu.no/emner/TMA4268/2019v/data/diamond.dd”)
dtrain <- all$dtrain
dtest <- all$dtest

Q1: Would you choose price or logprice as response variable? Justify your choice. Next, plot your choice
of response pairwise with carat, logcarat, color, clarity and cut. Comment.

We choose logprice as the response variable, since we postulate that diamond qualities have a multiplicative
effect on the price, not additive. A logarithmic response will result in such an interpretation of the regression
coefficients. We now create the plots as instructed.
library(tidyverse)
library(ggplot2)
library(dplyr)
library(tibble)
library(tidyr)

# Combine both training and testing set for plotting
dall <- bind_rows(dtrain, dtest)

# Plot categorical covariates
dall %>%

gather(key, value, c(”cut”, ”color”, ”clarity”)) %>%
ggplot(aes(y = logprice)) +
geom_boxplot(aes(x = value, col = key), alpha = 0.3) +
facet_wrap(.~key, scales = ”free”, nrow=3)

# Plot continuous covariates
dall %>%

gather(key, value, c(”carat”, ”logcarat”)) %>%
ggplot(aes(y = logprice)) +
geom_point(aes(x = value), alpha = 0.5) +
facet_grid(.~key, scales = ”free”)

From figure 2 further down we observe that logcarat seems to be the covariate that has the most linear
correlation with logprice, while carat does not. It is difficult to see any clear trends in the plots of the
categorical covariates clarity, color, and cut in figure 1, also further down.

Q2: What is the predicted price of a diamond weighting 1 carat. Use the closest 20% of the observations.

We now use the local regression model logprice = β0 + β1carat + β2carat2 weighted by the tricube kernel
Ki0.
model1 <- loess(logprice ~ carat + carat^2, data = dtrain, span = 0.2)
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Figure 1: Boxplot for categorical covariates: clarity, color, and cut. Plotted against logprice on the y-axis.

2



carat logcarat

1 2 3 −0.4 0.0 0.4

2.5

3.0

3.5

4.0

value

lo
gp

ric
e

Figure 2: Scatterplot of carat and logcarat on the x-axis plotted against logprice on the y-axis.
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We make a price prediction for a 1 carat diamond, using the closest 20% of the observations:
new_observation <- list(carat = 1)
price_prediction <- 10 ^ predict(model1, new_observation)
sprintf(”$%.2f USD”, price_prediction)

## [1] ”$5100.67 USD”

So the prediction is that a 1 carat diamond will cost ≃ $5100 USD.

Q3: What choice of β1, β2 and Ki0 would result in KNN-regression?

Let N0 be the index set for the K nearest (euclidean) neighbours of the predictor variable x0. Now assign
the following values

β1 ← 0
β2 ← 0

Ki0 ← I(i ∈ N0).

This yields the following expression to be minimized by the local regression

n∑
i=1

Ki0(yi − β0 − β1xi − β2x2
i )2 =

∑
i∈N0

(yi − β0)2,

The minimizer for this expression is β0 = 1
K

∑
i∈N0

yi = ȳN0 . Here we have denoted ȳN0 as the mean of the
responses of the K nearest neighbours to x0. This results in the following predictor

f̂(x0) = ȳN0 ,

which is in fact the predictor of a KNN-regression.

Q4: Describe how you can perform model selection in regression with AIC as criterion.

The Akaike Information Criterion (AIC) is defined as

AIC := −2 · ℓ(β̂M , σ̃2) + 2(|M |+ 1),

where β̂M is the estimated coefficient vector for a model with M regression parameters, and ℓ(·) is the
logarithm of the maximum likelihood for that model. How you calculate the maximum likelihood depends
on what type of regression you perform. We use |M |+ 1, because we have to add the estimated variance of
the error terms ϵi. For linear regression, AIC becomes:

AIC = 1
nσ̂2 (RSS + 2dσ̂2)

When we do model selection, i.e. picking between different candidate models, we can pick the model with
the lowest value for AIC.
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Q5: What are the main differences between using AIC for model selection and using cross-validation (with
mean squared test error MSE)?

Both methods are intended to evaluate the predictive power of a model while still accounting for the fact
that the model might be overfitted (and punishing accordingly).

AIC achieves this by using RSS as the measure of fit while adding a complexity term in order to adjust for
overfitting. The entirety of the data is used for the measure.

Cross-validation with mean squared test error MSE does not require such an additional complexity term. It
rather splits the data into training and validation sets, trains the model on the training set, and calculates
the MSE with the validation test. That way it implicitly guards against overfitting since the validation set
is not part of the model training procedure.

Here are some advantages/disadvantages:

• CV requires you to split your data set into training and testing subsets. This results in smaller sample
sizes for fitting the models, and can result in an overestimation of errors.

• CV test MSE can have high variability for smaller sample sizes, since it is dependent on which obser-
vations are included/excluded.

Q6: See the code below for performing model selection with bestglm() based on AIC. What kind of contrast
is used to represent cut, color and clarity? Write down the final best model and explain what you can
interpret from the model.
library(bestglm)
ds <- as.data.frame(

within(
dtrain,
{

y = logprice # setting response
logprice = NULL # not include as covariate
price = NULL # not include as covariate
carat = NULL # not include as covariate

}
)

)

fit <- bestglm(Xy=ds, IC=”AIC”)$BestModel
summary(fit)

##
## Call:
## lm(formula = y ~ ., data = data.frame(Xy[, c(bestset[-1], FALSE),
## drop = FALSE], y = y))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.31283 -0.03717 0.00033 0.03564 0.58991
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.985969 0.042993 69.452 < 2e-16 ***
## logcarat 1.580675 0.029042 54.428 < 2e-16 ***
## cutGood 0.028558 0.005747 4.970 6.93e-07 ***
## cutVery Good 0.040480 0.005285 7.660 2.22e-14 ***
## cutPremium 0.042984 0.005295 8.118 5.90e-16 ***
## cutIdeal 0.054829 0.005223 10.498 < 2e-16 ***
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## colorE -0.021787 0.003031 -7.189 7.51e-13 ***
## colorF -0.038892 0.003107 -12.519 < 2e-16 ***
## colorG -0.067999 0.003024 -22.488 < 2e-16 ***
## colorH -0.112815 0.003235 -34.877 < 2e-16 ***
## colorI -0.165072 0.003686 -44.783 < 2e-16 ***
## colorJ -0.223651 0.004543 -49.233 < 2e-16 ***
## claritySI2 0.174988 0.007933 22.060 < 2e-16 ***
## claritySI1 0.251631 0.007876 31.950 < 2e-16 ***
## clarityVS2 0.315556 0.007924 39.824 < 2e-16 ***
## clarityVS1 0.346409 0.008051 43.027 < 2e-16 ***
## clarityVVS2 0.402528 0.008233 48.894 < 2e-16 ***
## clarityVVS1 0.433326 0.008549 50.684 < 2e-16 ***
## clarityIF 0.473681 0.009154 51.745 < 2e-16 ***
## xx 0.069331 0.006610 10.489 < 2e-16 ***
## —
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.05978 on 4980 degrees of freedom
## Multiple R-squared: 0.9815, Adjusted R-squared: 0.9814
## F-statistic: 1.39e+04 on 19 and 4980 DF, p-value: < 2.2e-16

From the summary we can see that cut, color, and clarity are dummy coded with respectively cutFair,
colorD, and clarityI1 as reference categories.

The final best model is logprice ~ 1 + logcarat cut + color + clarity + xx, or in mathematical form

̂log(price)i =β̂0 + β̂logcaratxi,logcarat

+ β̂cutGoodxi,cutGood + β̂cutVeryGoodxi,cutVeryGood + β̂cutPremiumxi,cutPremium + β̂cutIdealxi,cutIdeal

+ β̂colorExi,colorE + β̂colorFxi,colorF + β̂colorGxi,colorG

+ β̂colorHxi,colorH + β̂colorIxi,colorI + β̂colorJxi,colorJ

+ β̂claritySI2xi,claritySI2 + β̂claritySI1xi,claritySI1 + β̂clarityVS2xi,clarityVS2 + β̂clarityVS1xi,clarityVS1

+ β̂clarityVVS2xi,clarityVVS2 + β̂clarityVVS1xi,clarityVVS1 + β̂clarityIFxi,clarityIF + β̂xxxi,xx

A price prediction for a covariate vector x0 is constructed in the following manner

̂logprice = β̂T x0 =⇒ p̂rice = 10β̂T x0 = 10β0 ·
19∏

i=1
10βix0,i .

Ten to the power of the regression coefficients are therefore of interest.
library(kableExtra)
beta_hat <- coefficients(fit)
10^beta_hat %>% kable(col.names = ”$10^{\\hat{\\beta}_i}$”, format = ”pandoc”)

10β̂i

(Intercept) 968.2091973
logcarat 38.0780598
cutGood 1.0679683
cutVery Good 1.0976911
cutPremium 1.1040377
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10β̂i

cutIdeal 1.1345648
colorE 0.9510721
colorF 0.9143407
colorG 0.8550694
colorH 0.7712320
colorI 0.6837986
colorJ 0.5975150
claritySI2 1.4961931
claritySI1 1.7849721
clarityVS2 2.0680260
clarityVS1 2.2202846
clarityVVS2 2.5265526
clarityVVS1 2.7122279
clarityIF 2.9763272
xx 1.1730878

Several things can be interpreted from this. The (Intercept) represents a 1 carat diamond, i.e. 0 logcarat,
with a fair cut, D color category, 0 mm in length, and I1 clarity category. Such a diamond is predicted to
cost ≃ $968 USD. Such a diamond clearly does not exist. All other covariates must be interpreted relative
to this “reference diamond”. For instance, since 10β̂cutIdeal ≈ 1.135, we would expect a diamond with an ideal
cut to cost 13.5% more than the “reference diamond”, all other properties being equal.

Q7: Calculate and report the MSE of the test set using the best model (on the scale of logprice).
best_subset_test_mse <- mean((dtest$logprice - predict.lm(fit, dtest))^2)
print(best_subset_test_mse)

## [1] 0.003600305

The test MSE is ≃ 0.0036.

Q8: Build a model matrix for the covariates ~logcarat+cut+clarity+color+depth+table+xx+yy+zz-1. What
is the dimension of this matrix?

We build the design matrix by using the model.matrix() function.
lasso_formula <- ~logcarat+cut+clarity+color+depth+table+xx+yy+zz-1
model_matrix <- model.matrix(

lasso_formula,
data = dtrain

)

Since we use dummy coding of categorical covariates, each covariate with c categories result in c−1 columns
in the design matrix. But in this case, we have no intercept, so one of the categorical covariates will have c
columns, one for each covariate. We have 3 categorical variables, with 5, 8, and 7 categories. This results in
18 columns, instead of 17 if we had an intercept in our model. In addition, we have 6 continuous covariates.
All together this results in 24 columns in the design matrix and n rows, where n equals the number of
observations, in this case 5000. To confirm, we can check
dim(model_matrix)

## [1] 5000 24

This coincides.

Q9: Fit a lasso regression to the diamond data with logprice as the response and the model matrix given
in Q8. How did you find the value to be used for the regularization parameter?
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We will fit a lasso regression model to the design matrix from Q8. In order to choose a suitable value for
the tuning parameter λ, we use 10-fold cross validation and the 1 standard deviation rule as explained in
exercise 1. We let glmnet choose a suitable range of λ values for us.
library(glmnet)
set.seed(0)
cv.out <- cv.glmnet(

x = model_matrix,
y = dtrain$logprice,
alpha=1, # Lasso
nfolds=10, # 10-fold CV
standardize=TRUE # Standardize coefficients, see: https://think-lab.github.io/d/205/#5

)

The cross validation MSE can be plotted against λ.
plot(cv.out)
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The two vertical lines correspond to the λ with the least CV MSE (left) and the λ chosen with the 1SD-rule
(right), with the specific values
print(cv.out$lambda.min)
print(cv.out$lambda.1se)

## [1] 0.0001177981
## [1] 0.000433306

The chosen regularization parameter is therefore λ ≈ 4.3 · 10−4, which is within one standard deviation of
λmin ≈ 1.2 · 10−4.

The resulting degrees of freedom in this model is:
best_index <- which(cv.out$glmnet.fit$lambda == cv.out$lambda.1se)
degrees_of_freedom <- cv.out$glmnet.fit$df[best_index]
print(degrees_of_freedom)
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## [1] 22

Which means that two of the regression coefficients are set to zero, and only 22 remain.

Q10: Calculate and report the MSE of the test set (on the scale of logprice).

We can now calculate the test MSE.
lasso_model <- cv.out$glmnet.fit
chosen_lambda <- cv.out$lambda.1se
xtest <- model.matrix(lasso_formula, data = dtest)
predictions <- predict(lasso_model, s = chosen_lambda, newx = xtest)
lasso_test_mse <- mean((dtest$logprice - predictions) ^ 2)
print(lasso_test_mse)

## [1] 0.003806364

The test MSE is ≈ 3.81 · 10−3 on the scale of logprice.

Q11: A regression tree to model is built using a greedy approach. What does that mean? Explain the
strategy used for constructing a regression tree.

A greedy approach means that the apparently best choice is taken at any one time, not considering the
possibility of a suboptimal choice may be taken in order to achieve an overall better result further down the
road. Once a decision has been made, no backtracking is performed, and the choice is “locked in”.

The idea of a regression tree is to take n observation pairs (xi, Yi) and separating them into J partitions of
the predictor space, R1, ..., RJ . Predictions are made by identifying the region which a predictor falls within
and then taking the average response of all the pairs of that region.

A prediction, f̂Rj
, for x0 belonging to the region Rj , is therefore calculated as

f̂Rj
= 1
|Rj |

∑
i:xi∈Rj

yi,

where |Rj | is the number of observed pairs placed within region Rj .

Now a question remains; how to construct these regions? We use a greedy approach called recursive binary
splitting. Define the parametrized regions

R1(j, s) := {x | xj < s},
R2(j, s) := {x | xj ≥ s}.

We want to pick the predictor j and split-off point s that minimizes the sum of the residual sum of squares
of both sub-partition, i.e.

(j, s) = argmin
(j,s)

 ∑
i:xi∈R1(j,s)

(yi − f̂R1(j,s))2 +
∑

i:xi∈R2(j,s)

(yi − f̂R2(j,s))2


We choose (j, s) recursively without backtracking (thus greedy), until some stopping criterion is reached.
The stopping criterion can be when the number of members of the resulting region is small enough, or when
the reduction in RSS is smaller than some threshold.

Q12: Is a regression tree a suitable method to handle both numerical and categorical covariates? Elaborate.
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Regression trees can handle categorical covariates as well, but there is now a change in how we view cut-
points. In the numerical case, for a choice of region Rk and a predictor Xj , there exists at most |Rk| − 1
cut-points that will result in unique partitions of the region.

For a categorical covariate the number of cut-points depends on the number of levels l in the covariate, and
if there is a sensible ordering of them. For example if the covariate is age demographic, then it makes sense
to just use cut-points of the same type as in the numerical case. This results in at most l− 1 cut-points per
region.

However, lacking such order as in the case of e.g. job type, this definition of a cut-point stops making sense.
What should be done now is to consider all ways of partitioning the levels into two non-empty subsets R1
and R2. This changes the branching criteria from evaluating if xi < s to checking if xi ∈ L1. The number
of “cut-points” per region thus becomes, in the worst case,

1
2

l−1∑
i=1

(
l

i

)
= 2l−1 − 1

and checking each one of them quickly becomes intractable as l increases. Using regression trees in such
cases should therefore be done with care.

Q13: Fit a (full) regression tree to the diamond data with logprice as the response (and the same covariates
as for c and d), and plot the result. Comment briefly on you findings.

We now fit a full regression tree for the diamond data.
library(tree)
diamond_formula <- logprice~logcarat+cut+clarity+color+depth+table+xx+yy+zz-1
full_tree <- tree(

diamond_formula,
data = dtrain

)

The decision tree can be visualized together with the partition space. We will transform the logprice to
price for easier interpretability.
# For deep copy of data-structures
library(rlang)

# Plot side-by-side
par(mfcol = c(1, 2))

# Convert fitted values from logprice to price
plot_tree <- duplicate(full_tree, shallow = FALSE)
plot_tree$frame$yval <- 10 ^ plot_tree$frame$yval

# Plot the decision tree together with decision criteria
plot(plot_tree, type = ”proportional”)
text(plot_tree, pretty = 1, cex = 0.5)

# Plot the partitioning of the xx-yy plane
partition.tree(plot_tree, cex = 0.4)
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The length of the edges in the tree on the left hand side are proportional to the reduction in RSS. We can
see that the first split, yy < 5.665, by far reduces the RSS the most. The tree algorithm also decides that
above this cut-point (to the right in the tree), only yy matters, and xx is ignored. The greater xx and yy
is, the greater the predicted price. Lastly, it is interesting that solely xx and yy are chosen, all of the other
covariates have been discarded. Using this model as a human is quite easy, as there are only two covariates
to consider.

Q14: Calculate and report the MSE of the test set (on the scale of logprice).

We can now calculate the test MSE on the scale of logprice.
tree_predictions <- predict(full_tree, dtest)
tree_test_mse <- mean((tree_predictions - dtest$logprice)^2)
print(tree_test_mse)

## [1] 0.01715548

The test MSE is ≈ 1.72 · 10−2, a whole order of magnitude greater than the lasso model fitted earlier. It
should be noted, though, that this model is substantially less complex than the lasso model.

Q15: Explain the motivation behind bagging, and how bagging differs from random forest? What is the
role of bootstrapping?

A problem with decision trees is that they often portray a large amount of variance, since small changes in
the predictors will often result in very different trees. One solution to this problem is bootstrap aggregation,
more commonly known as bagging.

The idea is to draw a sufficiently large amount, B, bootstrap samples from the training set and fit a tree,
f̂b(x), for every single replicate, Xb. The resulting predictor, f̂avg(x) is the average of all those trees,

f̂avg(x) = 1
B

B∑
b=1

f̂b(x).

The motivation is this, assume that we have B i.i.d. observations of the random variable X with mean µ
and variance σ2. The unbiased mean estimator, X̄ = 1

B

∑B
b=1 Xb, has a variance of
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Var(X̄) = Var

(
1
B

B∑
b=1

Xb

)
= 1

B2

B∑
b=1

Var(Xb) = σ2

B

The variance of the estimator is thus inversely proportional to the number of independent samples B. This
effect can be simulated by generating B bootstrap data sets; they are not completely independent but is
better than nothing.

Bagging is not the end all solution, however. If there is a really strong predictor in the training set, then this
predictor will end up being used in the first split in most of the bootstrap replicated trees. This results in
the trees becoming highly correlated, and we lose much of the variance reduction which we expect from the
averaging of the trees. A random forest aims to solve this by randomly removing a fraction of the covariates
in each split, instead of using all the covariates as we do in bagging. This is intended to decorrelate the trees.

Q16: What are the parameter(s) to be set in random forest, and what are the rules for setting these?

There are two parameters of interest when creating a random forest. The first is the number of trees, B.
This is not a tuning parameter, however, and the larger the better (ignoring computational cost). Pick a
value that is sufficiently large while being computationally feasible.

The other parameter is m, the number of covariates to be considered in each split. First off, we require
m < p, of course. For very correlated predictors, m is chosen to be small. A good a priori rule-of-thumb is
to choose m ≈ √p for classification and m ≈ p/3 for regression. This has been derived from simulations.

Q17: Boosting is a popular method. What is the main difference between random forest and boosting?

A random forest is created by averaging B trees fitted in parallel with the use of bootstrapping. The trees
are built independently of each other.

Boosting is different in that it is a sequential method. Trees are built sequentially, each fitted on the residuals
of an accumulated model of the previous trees. For a more rigorous explanation, see the Module 8 part of
Q29.

Q18: Fit a random forest to the diamond data with logprice as the response (and the same covariates as
before). Comment on your choice of parameter (as decribed in Q16).

We fit a random forest with the same formula.
set.seed(0)
random_forest <- randomForest(

diamond_formula,
data = dtrain,
ntree = 100,
mtry = 9 / 3,
importance = TRUE

)

We have here chosen mtry = 9 / 3 = 3 since we have a continuous response and this is a regression tree
(p = 9). With other words, we are using the rule-of-thumb m ≈ p/3.

Q19: Make a variable importance plot and comment on the plot. Calculate and report the MSE of the test
set (on the scale of logprice).

In order to interpret this ensemble method we can make a variable importance plot.
varImpPlot(random_forest)
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The two variable importance metrics (percentage increase in MSE and increase in node purity) give quite
different results. This is often more common for models with categorical covariates with many levels. Not
much can be said, as they don’t share any opinion of which variables are the most important.

We can now calculate the MSE for the test set on the scale of logprice.
random_forest_predictions <- predict(random_forest, dtest)
random_forest_test_mse <- mean((random_forest_predictions - dtest$logprice)^2)
print(random_forest_test_mse)

## [1] 0.002811009

We have a test MSE of ≈ 2.81 · 10−3.

Q20: Finally, compare the results from c (subset selection), d (lasso), e (tree) and f (random forest): Which
method has given the best performance on the test set and which method has given you the best insight into
the relationship between the price and the covariates?

We can now compare the test MSE scores of the four previous models.
test_mse <- tibble(

best_subset = best_subset_test_mse,
lasso = lasso_test_mse,
tree = tree_test_mse,
random_forest = random_forest_test_mse

)
t(test_mse) %>% kable(col.names = c(”Test MSE”), format = ”pandoc”)

Test MSE
best_subset 0.0036003
lasso 0.0038064
tree 0.0171555
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Test MSE
random_forest 0.0028110

We can see that the random forest has performed the best on the test set. The random forest is difficult to
interpret though, especially since the two importance plots do not coincide. The tree model is much simpler
to interpret, it condenses all the information down to just two covariates, xx and yy, making it easy to print
out on a piece of paper and taking it with you to the jeweler.

Problem 2: Unsupervised learning [3 points]
Q21: What is the definition of a principal component score, and how is the score related to the eigenvectors
of the matrix R̂.

Assume that you have an n × p design matrix X, with a standardized version Z where the columns have
been centered (having mean 0) and scaled (having variance 1). We want to linearly transform the set of
(possibly) correlated covariates into a new orthogonal basis where the new variables are linearly uncorrelated
while retaining as much of the information (variance) in the data as possible. These new variables, Wm, are
called principal components and the problem can be formally defined as trying to solve

Wm = Zϕm =
p∑

j=1
ϕmjColj(Z), ∀m : ||ϕm||2 = 1

Var(Wi) ≥ Var(Wj) ∀i, j : i < j (1)
Wi ⊥Wj , ∀i, j : i ̸= j.

The new variables are linear combination of the original columns. Since the components are sorted in
decreasing order of variance contributed, we can subset the first M components in order to reduce the
dimensionality of the original data set while retaining the maximum amount of information in the data set.

We will now explain how to solve this problem. The estimated covariance matrix, R̂ ∈ Rp×p, for the
standardized design matrix, Z, is given as

R̂ = 1
n− 1

n∑
i=1

(Zi − Z̄)(Zi − Z̄)T .

In this case Z̄ = 0, since we have centered the design matrix. We know that rank(R̂) = min(p, n−1), which
we will denote as r. Since R̂ is a symmetric and real, it is guaranteed to have an eigendecomposition. We
can therefore diagonalize R̂ as

R̂ = V ΛV −1,

where Λ = diag(λ1, ..., λr, 0, ..., 0) ∈ Rp×p is the diagonal eigenvalue matrix sorted in decreasing order and
V = [v1, ..., vp] is a matrix which columns consists of the respective eigenvectors of R̂. It can be shown that
ϕ = [ϕ1 ... ϕp] = V solves equation (1).

The principal component scores are the new values we attain in this transformed space. The transformation
is given as Zϕ = ZV ∈ Rp×p, where only the r first columns are nonzero. We therefore end up in practice
with r nonzero principal component scores for each of the original observations.

Q22: Explain what is given in the plot with title “First eigenvector”. Why are there only n = 64 eigenvectors
and n = 64 principal component scores?
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Figure 3: First eigenvector.

library(ElemStatLearn)
X <- t(nci) # n times p matrix
table(rownames(X))

ngroups <- length(table(rownames(X)))
cols <- rainbow(ngroups)
cols[c(4, 5, 7, 8, 14)] <- ”black”
pch.vec <- rep(4, 14)
pch.vec[c(4, 5, 7, 8, 14)] <- 15:19

colsvsnames <- cbind(cols, sort(unique(rownames(X))))
colsamples <- cols[match(rownames(X), colsvsnames[,2])]
pchvsnames <- cbind(pch.vec, sort(unique(rownames(X))))
pchsamples <- pch.vec[match(rownames(X), pchvsnames[,2])]

Z <- scale(X)
pca <- prcomp(Z)
plot(1:dim(X)[2], pca$rotation[,1], type=”l”, xlab=”genes”, ylab=”weight”)

##
## BREAST CNS COLON K562A-repro K562B-repro LEUKEMIA
## 7 5 7 1 1 6
## MCF7A-repro MCF7D-repro MELANOMA NSCLC OVARIAN PROSTATE
## 1 1 8 9 6 2
## RENAL UNKNOWN
## 9 1

Figure 3 shows the values of of the first eigenvector of R̂. With other words, it shows the entries of ϕ1, how
to linearly combine the columns of Z in order to get the first principal component score, which explains the
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most variance of all the principal components.

For our dataset, we have r = min(p, n − 1) = min(6830, 64 − 1) = 63. There should therefore be n = 63
eigenvectors, and n = 63 principal component scores for each observation. The R-function prcomp() returns
64, but the last eigenvector is the first of the n − r eigenvectors which are spanned by Null(Z). We would
therefore expect λ64 = 0, which we can check
pca$sdev[64]^2

## [1] 1.530027e-28

This is for all intents and purposes equal to 0, which is what we expected.

Q23: How many principal components are needed to explain 80% of the total variance in Z? Why is
sum(pca$sdev^2)=p?

If we transform Z into the first M principal components, the fraction of the original variance that is kept is

R2 =
∑M

i=1 λi∑p
j=1 λj

We can calculate these values by retrieving pca$sdev

library(magrittr) # For is_weakly_greater_than()
total_variance <- sum(pca$sdev^2)
sprintf(”Total variance: %.0f”, total_variance)

cummulative_variance <- cumsum(pca$sdev^2)
proportional_variance <- cummulative_variance / total_variance
sufficient_components <- proportional_variance %>%

is_weakly_greater_than(0.8) %>%
which() %>%
first()

sprintf(
”80 percent of variance is explained by the first %.0f principal components”,
sufficient_components

)

## [1] ”Total variance: 6830”
## [1] ”80 percent of variance is explained by the first 32 principal components”

We can explain 80% of the variance with the 32 first principal components. Since the principal component
analysis is performed on the standardized covariance matrix where the variance for each covariate has been
scaled to 1 the total variance becomes

∑p
i=1 1 = p.

Q24: Study the PC1 vs PC2 plot, and comment on the groupings observed. What can you say about the
placement of the K262, MCF7 and UNKNOWN samples? Produce the same plot for two other pairs of PCs and
comment on your observations.
plot_pca <- function(first, second) {

plot(
pca$x[,first],
pca$x[,second],
xlab = paste(”PC”, first, sep = ””),
ylab = paste(”PC”, second, sep = ””),
pch = pchsamples,
col = colsamples

)
legend(
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Figure 4: PC1 scores plotted against PC2 scores

”bottomright”,
legend = colsvsnames[,2],
cex = 0.55,
col = cols,
pch = pch.vec

)
}

plot_pca(1, 2)

MELANOMA, LEUKEMIA, and COLON are the cancer tumor cells that portrays the greatest degree of clustering. The
K562{A,B} cells, which are known to be leukemia cells, are located in the vicinity of the LEUKEMIA cluster,
which makes sense. The MCF7{A,D}, which are known to be breast cancer cells, are located in the COLON
cluster. Perhaps these cancer types are similar in some way? The UNKNOWN sample seems to be clustered close
to PROSTATE, NSCLC, and OVARIAN. Perhaps UNKNOWN is an NSCLC sample, because there are most NSCLC samples
in this region?

Below we have plotted the first and third principal components against each other (figure 5), as well as the
first and fourth (figure 6). Similar trends are still noticeable for K562A-repro and K562B-repro, and the UNKOWN
sample. For MCF7A-repro and MCF7D-repro these two plots show that their association with the COLON-cluster
is not as strong as we saw in the plot of the first two PC’s.
plot_pca(1, 3)

plot_pca(1, 4)

Q25:: Explain what it means to use Euclidean distance and average linkage for hierarchical clustering.

A cluster, Ck, is considered to be good if it has a within-cluster variation that is as small as possible. The
within-cluster variation, W (Ck), is defined in terms of the squared Euclidean distance between the members
of the cluster
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Figure 5: First PCA plotted against third PCA.
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Figure 6: First PCA plotted against fourth PCA.
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W (Ck) = 1
|Ck|

∑
i,i′∈Ck

p∑
j=1

(xij − xi′j)2,

where |Ck| is the cardinality of the cluster index set. Thus we want to find a cluster superset C = {C1, ..., Ck}
which minimizes

∑K
k=1 W (Ck). Several algorithms exists for finding such cluster sets, one of which is the

hierarchical clustering algorithm. The algorithm goes as follows:

1. Start with all n observations, i.e. the bottom of the dendogram (see next task). Consider each obser-
vation to be its own cluster.

2. while number of clusters > 1:

(a) Fuse the two clusters that are the most similar to each other.

(b) Decrement number of clusters by 1.

A question remains to be answered; how to define similarity between clusters? Consider two clusters con-
sisting of a single observation each, x1 and x2. We can use the euclidean distance ||x1−x2||2 as a similarity
measure.

But how do we measure the similarity between two clusters with cardinalities that are not equal to 1? We
need to generalize the concept of similarity to groups of observations. This is called linkage. There are
no straight forward answers here, but one proposal solution is to use mean inter-cluster dissimilarity, aka.
“average linking”. Define the average distance measure Da between two clusters C1 and C2 as

Da(C1, C2) = 1
|C1| · |C2|

∑
(xi,xj)∈C1×C2

||xi − xj ||2,

where C1×C2 is the Cartesian product between the two cluster sets. This is now what we want to minimize
when we fuse two clusters of arbitrary cardinality.

Q26:: Perform hierarchical clustering with Euclidean distance and average linkage on the scaled gene ex-
pression in Z. Observe where our samples labelled as K562, MCF7 and UNKNOWN are placed in the dendrogram.
Which conclusions can you draw from this?
dissimilarity_structure <- dist(Z, method = ”euclidean”)
hc_model <- hclust(dissimilarity_structure, method = ”average”)
plot(hc_model, cex = 0.45)
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The two K562 cells are first clustered together, and afterwards with all the other LEUKEMIA samples. This is
what we would expect, as they should be similar. The MCF7 cells, which are known to be breast cancer cells,
are also clustered with BREAST cells, which is also expected from what we know a priori.

Lastly, the UNKNOWN cell is considered to be relatively similar to an OVARIAN sample. Perhaps this cell sample
is ovarian cancer?

Q27:: Study the R-code and plot below. Here we have performed hierarchical clustering based on the first
64 principal component instead of the gene expression data in Z. What is the difference between using all
the gene expression data and using the first 64 principal components in the clustering? We have plotted the
dendrogram together with a heatmap of the data. Explain what is shown in the heatmap. What is given on
the horizontal axis, vertical axis, value in the pixel grid?

In task Q26 observations are clustered according to their respective euclidean distances in the original
covariate vector space Rp, i.e.

||z1 − z2||2 =

√√√√ p∑
j=1

(z1j − z2j)2

When performing hierarchical clustering on the principal component scores, the distance measure is defined
over the principal component space Rr instead.

||w1 −w2||2 =

√√√√ r∑
j=1

(w1j − w2j)2
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The 64th principal component score will always be ≈ 0, so it will not contribute to the distance. Which
different does this make? Observe the following

||w1 −w2||2 = ||zT
1 V − zT

2 V ||2 = ||(z1 − z2)T V ||2

=
[
(z1 − z2)T

V
(

(z1 − z2)T
V
)T
]1/2

=
[
(z1 − z2)T

V V T (z1 − z2)
]1/2

=
(a)

[
(z1 − z2)T (z1 − z2)

]1/2

= ||z1 − z2||2

In (a) we have used the fact that V is a unitary matrix, such that V V T = I.

We can see that the distances have been preserved in the principal component space. This can be confirmed
numerically by calculating the largest percentage difference in the respective euclidean distances:
max_percentage_difference <- max(100 * (dist(pca$x) - dist(Z)) / dist(Z))
print(max_percentage_difference)

## [1] 3.501195e-13

Only at most a 3.5 · 10−13 percent difference between the two spaces, which can be attributed to numerical
errors. So in conclusion, doing clustering in the PC-space makes absolutely no difference, besides possible
different numerical costs. It may also help with visualization, as we will now show.

We now plot the principal component scores as a heatmap.
library(pheatmap)
par(mfcol=c(1, 1))
npcs <- 64
pheatmap(

pca$x[,1:npcs],
scale = ”none”,
cluster_col = FALSE,
cluster_row = TRUE,
clustering_distance_rows = ”euclidean”,
clustering_method = ”average”,
fontsize_row = 5,
fontsize_col = 5

)
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The hierarchical clustering algorithm can be seen on the left vertical axis. The horizontal axis shows the
principal components, while the right vertical axis shows the observations. The pixels show the principal
component scores of each observation, red pixels indicate great positive scores while blue values indicate
great negative scores. Here it becomes apparent that the first principal component has the most variance,
and that the variance decreases as we move right. The last column, which is the 64th principal components,
is clearly populated by zeros, as explained earlier.

Problem 3: Flying solo with diabetes data [6 points]
First we import the data set.
flying <- dget(”flying.dd”)
ctrain <- flying$ctrain %>% as_tibble()
ctest <- flying$ctest %>% as_tibble()

Q28: Start by getting to know the training data, by producing summaries and plots. Write a few sentences
about what you observe and include your top 3 informative plots and/or outputs.

summary()

First it is practical to get a quick summary of the data structure of the training set by using summary():
summary(ctrain)

## diabetes npreg glu bp
## Min. :0.0000 Min. : 0.000 Min. : 57.0 Min. : 24.00
## 1st Qu.:0.0000 1st Qu.: 1.000 1st Qu.:100.0 1st Qu.: 64.00
## Median :0.0000 Median : 2.000 Median :117.0 Median : 70.00
## Mean :0.3333 Mean : 3.437 Mean :122.7 Mean : 71.23
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## 3rd Qu.:1.0000 3rd Qu.: 5.000 3rd Qu.:143.0 3rd Qu.: 78.00
## Max. :1.0000 Max. :17.000 Max. :199.0 Max. :110.00
## skin bmi ped age
## Min. : 7.00 Min. :18.20 Min. :0.0850 Min. :21.00
## 1st Qu.:21.00 1st Qu.:27.88 1st Qu.:0.2532 1st Qu.:23.00
## Median :29.00 Median :32.90 Median :0.4075 Median :28.00
## Mean :29.22 Mean :33.09 Mean :0.4789 Mean :31.48
## 3rd Qu.:37.00 3rd Qu.:37.12 3rd Qu.:0.6525 3rd Qu.:37.25
## Max. :60.00 Max. :67.10 Max. :2.1370 Max. :70.00

First of, we observe that all the columns are of numeric types. This is okay for the covariates, as they are
considered to be numeric, but we prefer to encode the diabetes response as a factor variable, so we will do
this straight away.
ctrain$diabetes <- as.factor(ctrain$diabetes)
ctest$diabetes <- as.factor(ctest$diabetes)
ctrain$diabetes %<>% recode(”0” = ”healthy”, ”1” = ”diabetes”)
ctest$diabetes %<>% recode(”0” = ”healthy”, ”1” = ”diabetes”)

Otherwise, we can see that one third of the observations have diabetes = 1. Also, the median number of
pregnancies is 2 and the average is 3.437, so we have a positive skew in pregnancies. The age column spans
from 21 to 70, which is good, since most age segments are represented. The dataset is not standardized in
any way. Lastly, the average and median bmi is ≈ 33, which is considered to be obese, which makes sense in
a sample set where 33% of the observations have diabetes.

ggpairs()

Next up we can use ggpairs() to get a really quick overview of the distributional properties of the data and
how they correlate.
library(GGally)
ggpairs(

ctrain,
mapping = aes(color = diabetes, alpha = 0.5),
upper = list(continuous = wrap(”cor”, size = 2.5)),
lower = list(continuous = wrap(”points”, size = 0.2))

)
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Here, diabetes = 0 is shown in red and diabetes = 1 is shown in blue. We can now see that diabetes sufferers
are overrepresented in the right tail of all the covariates (see the diagonal), especially glu.

ggcorrplot()

We can take a closer look at the covariance matrix of the design matrix with ggcorrplot().
library(ggcorrplot)
library(corrr)
ctrain %>%

select(-diabetes) %>%
cor() %>%
ggcorrplot(

type = ”lower”,
hc.order = TRUE,
title = ”Correlation matrix”,
show.diag = TRUE

)

24



ped

npreg

age

glu

bp

skin

bmi

pe
d

np
re

g
ag

e glu bp sk
in

bm
i

−1.0

−0.5

0.0

0.5

1.0
Corr

Correlation matrix

What is interesting here is the fact that Cor(age, npreg) and Cor(skin, bmi) are the greatest amongst the
correlations, with Cor(age, bp) following somewhat behind. Age being correlated with number of pregnancies
makes sense. Skin thickness is highly correlated with obesity, which BMI is intended to measure, it therefore
makes sense that also these are correlated.

Q29: Use different methods to analyse the data. In particular use

Module 4: Classification
We can choose between logistic regression, LDA, or QDA. The two latter methods assumes that the class-
specific distributions of the covariates are approximately Gaussian. The boxplots and histograms in the
ggpairs-plot show us that this assumption does not hold. We will therefore analyze the data using logistic
regression.

The logistic regression method comes from the diagnostic paradigm of classification. This paradigm consists
of methods where the goal is to estimate the posterior distribution P (Y = k|X = x) for each class k ∈ C,
where C is the set of classes the response Y can belong to. Logistic regression requires independence between
observational pairs (Yi, xi).

The diabetes classification is a two-class problem, C = {0, 1}, and we write P (Yi = 1|X = xi) = p(xi) for
brevity. Since we are modelling probabilities we need p(xi) ∈ [0, 1]. The most common function form used
for achieving this is the sigmoid function σ(x) = ex

1+ex . Using this the logistic regression model becomes

p(xi) =
exp

{
xT

i β
}

1 + exp
{

xT
i β
} = exp {β0 + β1xi1 + ... + βpxip}

1 + exp {β0 + β1xi1 + ... + βpxip}
∈ [0, 1]

With P (Yi = 0|X = xi) = 1− p(xi). The coefficients β are now estimated using MLE, where the coefficients
that maximizes the likelihood function
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β̂ = argmax
β

ℓ(β; x, y)

ℓ(β; x, y) =
n∏

i=1
p (xi | β)yi (1− p (xi | β))1−yi

are chosen.

As in linear regression, we need to decide on the number of parameters to include in our model. One way
to decide on which subset of the p available predictors to include is best subset selection. This is performed
exhaustively below with AIC as selection criterion.
library(magrittr) # For use_series()
library(caret) # For confusionMatrix()
library(e1071) # For ConfusionMatrix()
library(purrr) # For map_dbl()
set.seed(0)

# Create bestglm-compliant dataframe
Xy <- as.data.frame(

within(
ctrain,
{

y = diabetes # setting response
diabetes = NULL # not include as covariate

}
)

)

# Logistic model selection based on AIC
logistic_model <- bestglm(

Xy = Xy,
family = binomial,
IC = ”AIC”,
method = ”exhaustive”

) %>%
use_series(BestModel)

We can take a look at the resulting model with summary():
summary(logistic_model)

##
## Call:
## glm(formula = y ~ ., family = family, data = Xi, weights = weights)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.8277 -0.6312 -0.3269 0.5922 2.2182
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -11.196794 1.356891 -8.252 < 2e-16 ***
## npreg 0.114009 0.061917 1.841 0.065577 .
## glu 0.034711 0.005759 6.028 1.66e-09 ***

26



## bmi 0.107235 0.024922 4.303 1.69e-05 ***
## ped 1.969892 0.523686 3.762 0.000169 ***
## age 0.032784 0.019115 1.715 0.086322 .
## —
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 381.91 on 299 degrees of freedom
## Residual deviance: 255.89 on 294 degrees of freedom
## AIC: 267.89
##
## Number of Fisher Scoring iterations: 5

The resulting model formula is diabetes ~ npreg + glu + bmi + ped + age where only npreg and age are
considered insignificant at a significance level of α = 0.05, but significant at α = 0.1.

To interpret the fitted model it is useful to define the notion of odds. This is just the ratio of the esti-
mated probabilities of the two classes. After taking the logarithm of the odds, and doing some algebraic
manipulation we get that

log
(

p̂(xi)
1− p̂(xi)

)
= xT

i β̂,

which shows that the log odds is linear in the predictors when using the sigmoid function. This means that
by increasing one of the predictors xij by one unit, while holding everything else constant, the predicted log
odds will increase by β̂j units. Equivalently, the odds will increase by a factor of eβ̂j . The linear relation
between our independent variables and tho log odds is one of our model assumptions.
coefficients(logistic_model) %>%

exp() %>%
kable(format = ”latex”, col.names = c(”exp(beta)”))

exp(beta)
(Intercept) 0.0000137
npreg 1.1207618
glu 1.0353208
bmi 1.1131957
ped 7.1698986
age 1.0333275

Here we see, for instance, that for every additional pregnancy we expect a ≈ 12.1% increase in the predicted
odds of having diabetes, everything else being equal.

Under the Bayes classifier in a two-class problem an observation xi is assigned the class for which the
predicted posterior is greater than 0.5. Using this, we can evaluate the performance of the model on the test
set. The results are shown below, along with a plot of the ROC-curve and the corresponding AUC.
# Create diabetes predictions
logistic_predictions <- predict(logistic_model, ctest, type = ”response”) %>%

map_lgl(~ .x > 0.5) %>%
if_else(”diabetes”, ”healthy”) %>%
as_factor()

# Create confusion matrix
logistic_confmat <- confusionMatrix(

data = logistic_predictions,
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reference = ctest$diabetes
)
print(logistic_confmat)

## Confusion Matrix and Statistics
##
## Reference
## Prediction healthy diabetes
## healthy 137 29
## diabetes 18 48
##
## Accuracy : 0.7974
## 95% CI : (0.7399, 0.8472)
## No Information Rate : 0.6681
## P-Value [Acc > NIR] : 9.374e-06
##
## Kappa : 0.5262
##
## Mcnemar’s Test P-Value : 0.1447
##
## Sensitivity : 0.8839
## Specificity : 0.6234
## Pos Pred Value : 0.8253
## Neg Pred Value : 0.7273
## Prevalence : 0.6681
## Detection Rate : 0.5905
## Detection Prevalence : 0.7155
## Balanced Accuracy : 0.7536
##
## ’Positive’ Class : healthy
##

The overall misclassification rate of the model is ≈ 20.3%.

Module 8: Trees (and forests)
How it works

We now want to fit a boosted tree to the data set. A boosted tree is a sequential learning model that learns
by “modifying” itself based on the remaining residuals in each step. Here is how it works algorithmically:

1. Set f̂ (0)(x) = 0 and ri = yi for all i in the training set.

2. For b = 1, 2, ..., B, repeat:

(a) Fit a new f̂ (b) with d splits, from the remaining residuals of the previous iteration. This results
in d + 1 leaf nodes.

(b) Update f̂ by adding a shrunken down version of this new tree:

f̂ ← f̂ + λf̂ (b)

(c) Update the residuals,
ri ← ri − λf̂ (b)(xi)

3. The boosted model is f̂(x) =
∑B

b=1 λf̂ (b)(x).
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Parameters

We will use the package gbm in order to fit this boosted tree, but we need to pick the following tuning
parameters:

• The number of trees grown, B. If this is too low, not all of the information is used, while if it is too
large we will overfit the model. gbm calls this paramater n.trees.

• The shrinkage parameter, λ, determines how fast the the algorithm learns. A lower value will require
more trees in order to offset the slow learning. gbm calls this parameter shrinkage.

• The interaction depth, d, is the number of splits in each tree. Greater values imply a greater degree of
interaction between the covariates, while d = 1 results in an additive model. gbm calls this parameter
interaction.depth.

• Additionally, gbm requires the parameter n.minobsinnode which constrains the minimal size of the leaf
nodes. That way the algorithm can’t put ”troublesome” residuals into very small leaf nodes in order
to reduce such residuals, that would lead to overfitting. We will denote this parameter as m.

The question remains, how to choose these parameters? We will use 10-fold cross validation in conjunction
with a grid search in order to pick suitable tuning parameters from our training set.

The R-package caret enables us to specify the cross validation with trainControl():
library(caret)
cross_validation <- trainControl(

method = ”cv”,
number = 10,
classProbs = TRUE,
allowParallel = TRUE

)

We can also specify the grid on which to search for the best tuning parameters. We will choose:

B = [10, 20, 30, 50, 100]
d = [1, 3, 5, 10]
λ = [0.2, 0.15, 0.1, 0.05, 0.01, 0.001]

m = [10, 15, 20, 30]

where the grid to search upon becomes B×d×λ×m. This can also be specified in caret with the function
expand.grid():
tune_grid <- expand.grid(
n.trees = c(10, 20, 30, 50, 100),
interaction.depth = c(1, 3, 5, 10),
shrinkage = c(0.2, 0.15, 0.1, 0.05, 0.01, 0.001),
n.minobsinnode = c(10, 15, 20, 30)
)

Fitting the model

We can now instruct caret to train a boosted tree model with a search upon this grid. The model with the
best cross-validated accuracy is chosen.
set.seed(0)
boost_model <- caret::train(

form = diabetes ~ .,
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data = ctrain,
method = ”gbm”,
trControl = cross_validation,
tuneGrid = tune_grid,
verbose = FALSE

)

We can plot the cross-validated accuracy for each point on the grid:
ggplot(

boost_model,
metric = ”Accuracy”,
nameInStrip = TRUE

) + theme(text = element_text(size=8))
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We can get the specific point on the grid which is considered optimal:
boost_model$bestTune

## n.trees interaction.depth shrinkage n.minobsinnode
## 446 10 5 0.2 15

B = 10, d = 5, λ = 0.2, and m = 15 performs best, so this is what is chosen in the final model. We can
create a variable importance plot of the final model
final_model <- boost_model$finalModel
summary(final_model)
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## var rel.inf
## glu glu 48.8760656
## age age 15.4624943
## bmi bmi 14.8362051
## ped ped 12.7539190
## skin skin 6.6094913
## npreg npreg 0.7605521
## bp bp 0.7012727

glu (glucose) is considered the most important covariate according to our final model. This coincides with
what the authors would expect as blood sugar levels are highly related to diabetes. We can calculate the
confusion matrix of this model tested against our test data set.
boost_probabilities <- predict(

boost_model,
newdata = ctest,
type = ”prob”

) %>%
pull(diabetes)

boost_predictions <- boost_probabilities %>%
map_lgl(~ .x > 0.5) %>%
if_else(”diabetes”, ”healthy”) %>%
as_factor()

boost_confmat <- confusionMatrix(
data = boost_predictions,
reference = ctest$diabetes

)
print(boost_confmat)

## Confusion Matrix and Statistics
##
## Reference
## Prediction healthy diabetes
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## healthy 138 33
## diabetes 17 44
##
## Accuracy : 0.7845
## 95% CI : (0.7259, 0.8356)
## No Information Rate : 0.6681
## P-Value [Acc > NIR] : 6.596e-05
##
## Kappa : 0.4872
##
## Mcnemar’s Test P-Value : 0.03389
##
## Sensitivity : 0.8903
## Specificity : 0.5714
## Pos Pred Value : 0.8070
## Neg Pred Value : 0.7213
## Prevalence : 0.6681
## Detection Rate : 0.5948
## Detection Prevalence : 0.7371
## Balanced Accuracy : 0.7309
##
## ’Positive’ Class : healthy
##

The result here is an overall accuracy of ≈ 78.5%, i.e. a misclassification rate of 21.5%. Interestingly, we have
a ≈ 89% sensitivity, so the model is able to correctly predict diabetes for nine out of ten diabetes sufferers.

Finally, we can plot the ROC-curve for the model and report the AUC.
library(pROC)
roc(

response = ctest$diabetes,
predictor = boost_probabilities,
plot = TRUE,
auc.polygon = TRUE,
print.auc = TRUE,
legacy.axes = TRUE,
xlim = c(1, 0)

)
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##
## Call:
## roc.default(response = ctest$diabetes, predictor = boost_probabilities, plot = TRUE, auc.polygon = TRUE, print.auc = TRUE, legacy.axes = TRUE, xlim = c(1, 0))
##
## Data: boost_probabilities in 155 controls (ctest$diabetes healthy) < 77 cases (ctest$diabetes diabetes).
## Area under the curve: 0.8371

Here we see that the ROC curve is far from being diagonal and AUC ≈ 0.84 > 0.5, which a random guessing
model would have. It can therefore be considered to have explaining power.

Module 9: Support vector machines
We will now implement a support vector machine with a linear kernel for the diabetes data set.

How it works

First off, let us notationally recode the diabetes response vector such that yi = 1 indicates a patient with
diabetes, as before, but yi = −1 for non-diabetes patients. Now, define a p-dimensional hyperplane as

β0 + xT β = 0,

where β = [β1, ..., βp]T is the plane’s normal vector. Assuming that ||β||2 = 1, then the value of β0 + xT
i β

gives the distance from the plane to xi. The value is positive if the point xi lies on one side of the hyperplane,
while it is negative if it lies on the other side. Now the idea is to find a hyperplane which satisfies

yi(β0 + xT
i β) > 0,

such that we can construct a classifier for a new observation x0 as

f̂(x) =

{
1 , if β0 + xT

0 β > 0
−1 , otherwise.
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Ideally we would like to find a maximal margin hyperplane which perfectly divides the two classes of obser-
vations from each other and is the farthest away from the training observations as possible. This distance is
what we call the margin, and we denote this length as M .

Now in practice, such a perfect dividing hyperplane seldom exists. We must allow some training observations
to lie within this margin or even lie on the wrong side of the hyperplane. We introduce the concept of slack
in order to formulate an optimization problem that finds a soft-margin classifier instead

argmax
β0,...,βp,ϵ1,...,ϵn

M, subject to...

||β||2 =1,

yi(β0 + βT xi) ≥M(1− ϵi), (∀i = 1, ..., n)
ϵi ≥0,

n∑
i

ϵi ≤C.

ϵ1, ..., ϵn are the slack variables which allows the optimization algorithm to place points on the wrong side
of the margin. If ϵi equals zero, the observation lies on the right side of the margin, and if it is greater than
zero it does not. Lastly, if it is greater than one, it lies on the wrong side of the hyperplane and will therefore
be wrongly classified.

C is here a tuning parameter that restricts the optimization algorithm in its pursuit of the widest possible
margin, as the aggregate sum of the slack variables can’t exceed this limit. With other words, no more than
C training observations may be wrongly classified.

Parameter selection

The tuning parameter C will again be found with a grid search (actually a line search) with 10-fold
cross validation with accuracy as the selection metric yet again. We will search over the points C =
[0.001, 0.01, 0.1, 1, 2, 3, 4, 5, 10, 30].
svm_tune_grid <- expand.grid(

C = c(0.001, 0.01, 0.1, 1, 2, 3, 4, 5, 10, 30)
)

Fitting the model

We will now perform the grid search and retrieve the best model.
set.seed(0)
svm_model <- caret::train(

form = diabetes ~ .,
data = ctrain,
method = ”svmLinear”,
trControl = cross_validation,
preProcess = c(”center”, ”scale”),
tuneGrid = svm_tune_grid

)

Notice that we decided to standardize the covariates in the preProcess parameter. This is important since
the euclidean norm is involved in the optimization, and we do not want the covariates with the greater
variance to dominate the distance measures.

The result of the line search can now be plotted.
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svm_plot <- plot(svm_model, xTrans = log)
svm_plot$xlab = expression(log(C))
svm_plot
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We have here logarithmically transformed the C-axis. C = 1 seems to be the tuning parameter that wins
out, and this can be verified
svm_model$bestTune

## C
## 4 1

Yes, C = 1 is the parameter that we end up choosing.

Model assessment

We can now calculate the confusion matrix of this model against our test set.
svm_predictions <- predict(

svm_model,
ctest

)
svm_confmat <- confusionMatrix(

data = svm_predictions,
reference = ctest$diabetes

)
svm_confmat

## Confusion Matrix and Statistics
##
## Reference
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## Prediction healthy diabetes
## healthy 141 33
## diabetes 14 44
##
## Accuracy : 0.7974
## 95% CI : (0.7399, 0.8472)
## No Information Rate : 0.6681
## P-Value [Acc > NIR] : 9.374e-06
##
## Kappa : 0.513
##
## Mcnemar’s Test P-Value : 0.00865
##
## Sensitivity : 0.9097
## Specificity : 0.5714
## Pos Pred Value : 0.8103
## Neg Pred Value : 0.7586
## Prevalence : 0.6681
## Detection Rate : 0.6078
## Detection Prevalence : 0.7500
## Balanced Accuracy : 0.7406
##
## ’Positive’ Class : healthy
##

The resulting accuracy is ≈ 79.74%, with a sensitivity of approximately 91% and specificity of 57%. We
therefore have a misclassification rate of ≈ 20%. The model is therefore pretty good at predicting diabetes
for diabetes patients but it has a relatively high false positive rate. If the downside of not detecting diabetes
is much worse than the downside of predicting diabetes for a patient that is really healthy, this could be
considered a good model. If the opposite is the case, then it can be considered a bad model.

Module 11: Neural networks
We will now implement a single-hidden-layer neural network for the data set.

How it works

Structure of the neural network

The explanation for how a neural network works is best accompanied with an illustration, see figure 7.

The blue xi nodes on the left hand side in the figure are the so-called input nodes. In our case, this is bmi,
glu and so on. The bias nodes represent constant intercepts.

The input data is fed into the hidden layer nodes by weighted summation. Each arrow is a term in the sum,
with an associated weight αjm. The hidden node applies a hidden layer activation function ϕh on the input
before it sends it forward into the next layer. So the input to the hidden layer node zi therefore becomes

zi(x) = ϕh

α0i +
p∑

j=1
αjixj


We will use the sigmoid function as the activation function:

ϕh(x) = 1
1 + exp(−x)
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Figure 7: Single-hidden-layer neural network

Since we have a single-hidden-layer network, the hidden nodes feed their output to the output layer in the
same fashion, together with a new bias node and new weights βmc. The output activation function, ϕo, must
also be chosen and we use the sigmoid function yet again, i.e. ϕo = ϕh. In our case, we only have one node in
the output layer, as we have a binary classification problem. The value of the output node therefore becomes

ŷ1 = ϕ0

β01 +
w∑

j=1
βj1zj


Here w denotes the number of nodes in the hidden layer, often called the width of the neural network. This
is a tuning parameter. Generally, you would also be able to add additional hidden layers to the network,
increasing its width. But the R-package nnet only support single-hidden-layer networks, so we will not be
able to tune this parameter.

The optimization problem

Now, how do we decide the weights of the edges, θ := [α’s, β’s]? We want to maximize the log-likelihood of
the statistical model. We define an objective function, J(θ), a scaled version of the binomial cross-entropy
loss, which is the negative of the binomial log likelihood in scaled form

J(θ) = − 1
n

n∑
i=1

(yi ln(ŷ1(xi)) + (1− yi) ln(1− ŷ1(xi)))

We seek to find the θ which minimizes this loss function. In practice, this is done with the BFGS method of
optim by nnet.

Additionally, we should mention that nnet supports adding a L2-penalty, λ, to the loss function for regular-
ization purposes. This is similar to what we have seen in ridge regression models earlier. The loss function
therefore becomes

J(θ) = − 1
n

n∑
i=1

(yi ln(ŷ1(xi)) + (1− yi) ln(1− ŷ1(xi))) + 1
n

λ

2
||θ||22
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In neural networks λ is known as weight decay, and this is the second and last tuning parameter in this
model.

Parameter selection

We will perform a grid search over the tuning parameter space w×λ = [1, 2, ..., 11]× [0, 0.1, ..., 0.5] with the
same method as explained before.
nn_tune_grid <- expand.grid(

size = seq(from = 1, to = 11, by = 1),
decay = seq(from = 0, to = 0.5, by = 0.1)

)

We can now perform this grid search and retrieve the best model. The covariates need not really be centered
and scaled, but it often helps with the convergence rate of the optimization algorithm, as explained in this
StackOverflow answer.
set.seed(42)
nn_model <- caret::train(
diabetes ~ .,
data = ctrain,
method = ”nnet”,
preProcess = c(”center”, ”scale”),
trControl = cross_validation,
tuneGrid = nn_tune_grid,
linout = FALSE,
trace = FALSE

)

The result of the grid search algorithm can be plotted.
ggplot(nn_model, highlight = TRUE)
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By inspection we see that 6 hidden nodes with a weight decay of 0.2 is optimal, which can be confirmed:
nn_model$bestTune

## size decay
## 33 6 0.2

The resulting weights of each edge can be printed:
summary(nn_model$finalModel)

## a 7-6-1 network with 55 weights
## options were - entropy fitting decay=0.2
## b->h1 i1->h1 i2->h1 i3->h1 i4->h1 i5->h1 i6->h1 i7->h1
## -1.96 -0.34 -0.92 -0.35 -1.31 -0.97 0.77 -0.51
## b->h2 i1->h2 i2->h2 i3->h2 i4->h2 i5->h2 i6->h2 i7->h2
## -0.22 -0.22 1.07 -2.27 -0.77 -0.39 -0.19 -0.91
## b->h3 i1->h3 i2->h3 i3->h3 i4->h3 i5->h3 i6->h3 i7->h3
## 1.01 0.95 -1.07 1.02 -0.10 -0.41 -1.12 1.02
## b->h4 i1->h4 i2->h4 i3->h4 i4->h4 i5->h4 i6->h4 i7->h4
## -0.77 -0.87 1.03 0.14 -0.66 0.80 0.28 1.09
## b->h5 i1->h5 i2->h5 i3->h5 i4->h5 i5->h5 i6->h5 i7->h5
## 0.60 -0.73 -0.32 -0.13 -0.58 -1.70 -2.55 0.57
## b->h6 i1->h6 i2->h6 i3->h6 i4->h6 i5->h6 i6->h6 i7->h6
## -0.62 0.20 -1.27 0.36 -0.01 0.87 -1.01 -1.58
## b->o h1->o h2->o h3->o h4->o h5->o h6->o
## -0.54 -2.99 2.22 2.06 2.00 -3.22 -2.02

This is hard to parse, so we will use a plot method implemented by the GitHub user Peque avaliable here in
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order to visualize the neural network:
library(devtools)
source_url(’https://gist.githubusercontent.com/Peque/41a9e20d6687f2f3108d/raw/85e14f3a292e126f1454864427e3a189c2fe33f3/nnet_plot_update.r’)
plot.nnet(nn_model$finalModel)
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Grey edges represent negative weights, while the black ones represent positive weights. The thickness of each
line is proportional to the magnitude of the weights.

We can now test the neural net on our testing data set:
nn_probabilities <- predict(nn_model, ctest, type = ”prob”)
nn_predictions <- predict(nn_model, ctest)
nn_confmat <- confusionMatrix(

data = nn_predictions,
reference = ctest$diabetes,

)
nn_confmat

## Confusion Matrix and Statistics
##
## Reference
## Prediction healthy diabetes
## healthy 132 31
## diabetes 23 46
##
## Accuracy : 0.7672
## 95% CI : (0.7075, 0.82)
## No Information Rate : 0.6681
## P-Value [Acc > NIR] : 0.0006343
##
## Kappa : 0.4611
##
## Mcnemar’s Test P-Value : 0.3408032
##
## Sensitivity : 0.8516
## Specificity : 0.5974
## Pos Pred Value : 0.8098
## Neg Pred Value : 0.6667
## Prevalence : 0.6681
## Detection Rate : 0.5690
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## Detection Prevalence : 0.7026
## Balanced Accuracy : 0.7245
##
## ’Positive’ Class : healthy
##

We have a misclassification rate of ≈ 23.3%.

Q30: Conclude with choosing a winning method, and explain why you mean that this is the winning method.

Let us gather all the calculated test accuracies, sensitivities, and specificities of our four models.
models <- list(

”logistic” = logistic_confmat,
”boost” = boost_confmat,
”svm” = svm_confmat,
”nnet” = nn_confmat

)

comparison <- tibble(
method = character(),
accuracy = double(),
sensitivity = double(),
specificity = double()

)

for (model in names(models)) {
comparison %<>% add_row(

method = model,
accuracy = models[[model]]$overall[”Accuracy”],
sensitivity = models[[model]]$byClass[”Sensitivity”],
specificity = models[[model]]$byClass[”Specificity”]

)
}

comparison %>% kable(format = ”pandoc”, digits = 3)

method accuracy sensitivity specificity
logistic 0.797 0.884 0.623
boost 0.784 0.890 0.571
svm 0.797 0.910 0.571
nnet 0.767 0.852 0.597

We can now see that the logistic and svm models have comparable accuracies of ≈ 79.7%, but with different
sensitivities and specificities. Which model we choose as the “best” model depends on multiple factors and
which objectives we want to meet. For instance, if early detection of diabetes is paramount, we would prefer
high sensitivity at the cost of lower specificity. With this in mind, the svm model might be preferable.

But we choose the logistic regression model to be the “winning model” as it allows for easier inference. The
model can be used to explain which factors that are correlated to diabetes, and you can say things such as
“the odds of getting diabetes is expected to increase X% for every additional BMI point, everything else being
equal”.
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