
Compulsory exercise 1: Group 64
TMA4268 Statistical Learning V2019

Jakob Gerhard Martinussen, Alm Wilson
19 February, 2019

Problem 1: Multiple linear regression

library(GLMsData)
data("lungcap")
lungcap$Htcm <- lungcap$Ht * 2.54
modelA <- lm(

log(FEV) ~ Age + Htcm + Gender + Smoke,
data=lungcap

)
summary(modelA)

##
Call:
lm(formula = log(FEV) ~ Age + Htcm + Gender + Smoke, data = lungcap)
##
Residuals:
Min 1Q Median 3Q Max
-0.63278 -0.08657 0.01146 0.09540 0.40701
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.943998 0.078639 -24.721 < 2e-16 ***
Age 0.023387 0.003348 6.984 7.1e-12 ***
Htcm 0.016849 0.000661 25.489 < 2e-16 ***
GenderM 0.029319 0.011719 2.502 0.0126 *
Smoke -0.046067 0.020910 -2.203 0.0279 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.1455 on 649 degrees of freedom
Multiple R-squared: 0.8106, Adjusted R-squared: 0.8095
F-statistic: 694.6 on 4 and 649 DF, p-value: < 2.2e-16

Q1:

The underlying distributional assumption is

log(FEV) = Y = f(x) + ε = xTβ + ε = β0 + βagexage + βheightxheight + βmalexmale + βsmokexsmoke + ε

Where we assume ε ∼ Nn(0, σ2I). The fitted model is Ŷ = xT β̂.

Q2:

1

Estimate

The Estimate column represents the entries in the β̂ vector of length 5, the model estimation for β. Remember
that the model is fitted with a logarithmic FEV response, so the model prediction of an induvidual x’s FEV
becomes

FEV = eŶ = ex
T β̂ .

The (Intercept) estimate represents a non-smoking female individual of age 0 and height 0, which is
nonsensical.
beta <- coefficients(modelA)
interceptFEV <- exp(beta["(Intercept)"])
interceptFEV

(Intercept)
0.1431305

Such an imaginary individual is predicted to have a FEV of ≈ 0.14 litres. Now, in order to explain the
remaining estimates, assume one of the covariates, xj , to change to xj + 1. How does the model’s FEV
prediction change from FEVbefore to FEVafter in such a case?

FEVafter = ex
T β̂ = eβ̂0+x1β̂1+...+(xj+1)β̂j+...β̂pxp = eβ̂jex

T β̂ = eβ̂jFEVbefore

The exponential of the coefficient estimates represents the multiplicative change of the model prediction as
the respective covariate changes. In our case, these multiplicative effects are
library(tidyverse)
library(kableExtra)
enframe(exp(beta)) %>% kable()

name value
(Intercept) 0.1431305
Age 1.0236628
Htcm 1.0169915
GenderM 1.0297534
Smoke 0.9549775

Here we see that an individual which smokes is expected to have ≈ 95.5% of the FEV of a non-smoking
individual, everything else being equal. Likewise, for every additional year of age, an individual is expected
to increase their FEV by ≈ 2.4%.

Std.Error

The Std.Error column shows the model estimate of the standard error, SE(βj). In order to calculate these
estimates, we need the notion of residuals, defined by

ei := Yi − Ŷi = Yi − xTi β̂,

i.e. the difference between the actually observed values and the model predictions for the training set. The
population distribution variance parameter can now be estimated by

σ̂2 =
∑n
i=1 e

2
i

n− p− 1 = RSS
n− p− 1 ,

2

where RSS is the residual sum of squares. The estimation of the standard error of the parameter estimation
for βj can now be expressed as

ŜE(β̂i) =
√

[(XTX)−1][i,i] σ̂ := √cjj σ̂,

where cjj is the j’th diagonal entry of the matrix (XTX)−1. For instance, under our model assumptions,
βage is estimated to be normally distributed with standard error
modelASummary <- summary(modelA)
modelAEstimates <- as_tibble(modelASummary$coefficients)
modelAEstimates$`Std. Error`[2]

[1] 0.003348451

Residual standard error

The residual standard error (RSS) for our model is
modelASummary$sigma

[1] 0.1454686

and is found by summing the square difference between the observed values and the model predictions, as
follows

RSS =
n∑
i=1

e2
i =

n∑
i=1

(Yi − Ŷi)2 =
n∑
i=1

(Yi − xTi β̂)2 = (Y −Xβ̂)T (Y −Xβ̂)

and can be thought of as the variability that remains to be explained by the model.

F-statistic

The F-statistic is a test statistic for the following hypothesis test

H0 : β = ~0
vs.

H1 : βj 6= 0, for at least one j.

It tests if at least one of the model covariates have explanatory power. The test statistic is constructed as
follows

F = (TSS− RSS)/p
RSS/(n− p− 1) ∼ Fp,n−p−1,

where

TSS :=
n∑
i=1

(yi − ȳ)2

The test statistic is Fisher distributed with p and n − p − 1 degrees of freedom, in our case 4 and 649
respectively. This test results in a p-value of less than 2.2 · 10−16, and we can relatively confidently conclude
that the regression is significant.

3

Q3:

The proportion of variability explained by modelA can be found by calculating the multiple R-squared statistic,
given by

R2 := TSS− RSS
TSS = 1− RSS

TSS ∈ [0, 1]

TSS−RSS can be interpreted as the amount of variability explained by the model, while TSS is the total
variability in the training set. In our case, this value is ≈ 80.95%.

Q4:

Here we use standardized residual plots in order to check our model assumptions. One of our assumptions is

ε ∼ Nn(0, σ2I).

With other words, the error terms are identically, and independently normally distributed with mean zero.
We can use the model standardized residuals as estimators for the error terms, and check these assumptions.
First,
library(ggplot2)
Residuals vs fitted
ggplot(modelA, aes(.fitted, .stdresid)) +

geom_point(pch = 21) +
geom_hline(yintercept = 0, linetype = "dashed") +
geom_smooth(se = FALSE, col = "red", size = 0.5, method = "loess") +
labs(

x = "Fitted values",
y = "Standardized residuals",
title = "Fitted values vs. Standardized residuals",
subtitle = deparse(modelA$call)

)

4

−4

−2

0

2

0.4 0.8 1.2 1.6

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(formula = log(FEV) ~ Age + Htcm + Gender + Smoke, data = lungcap)

Fitted values vs. Standardized residuals

Here we expect the standardized residuals to be symmetrically distributed across the x-axis (zero expected),
and no discernible magnitude trend along the x-axis. The latter requirement follows from the independence
between the observational pairs (Yi, xi) and the error terms εi. Both requirements seem to be satisfied, so no
issues so far. Next,
qq-plot of residuals
ggplot(modelA, aes(sample = .stdresid)) +

stat_qq(pch = 19) +
geom_abline(

intercept = 0,
slope = 1,
linetype = "dotted"

) +
labs(

x = "Theoretical quantiles",
y = "Standardized residuals",
title = "Normal Q-Q",
subtitle = deparse(modelA$call)

)

5

−4

−2

0

2

−2 0 2

Theoretical quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(formula = log(FEV) ~ Age + Htcm + Gender + Smoke, data = lungcap)

Normal Q−Q

Here we plot a normal Q-Q plot for the model residuals. Ideally, we would like to see all points lying perfectly
along a line going through the origin. In this case, we have some deviation from this straight line at the tails.
This indicates a somewhat heavy left tail and light right tail, compared to the normal distribution.

Finally,
library(nortest)
ad.test(rstudent(modelA))

##
Anderson-Darling normality test
##
data: rstudent(modelA)
A = 1.9256, p-value = 6.486e-05

Here, the “Anderson-Darling normality test” is performed on the studentized residuals. Due to a large value
for A, we must reject the null-hypothesis of residual normality. Since these results are not ideal, we should be
somewhat careful while making inferences going forwards.

Q5:

We now fit a new model, modelB, identical to modelA except for not using a logarithmic transformation for
FEV.
modelB <- lm(FEV ~ Age + Htcm + Gender + Smoke, data=lungcap)
summary(modelB)

##
Call:
lm(formula = FEV ~ Age + Htcm + Gender + Smoke, data = lungcap)

6

##
Residuals:
Min 1Q Median 3Q Max
-1.37656 -0.25033 0.00894 0.25588 1.92047
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.456974 0.222839 -20.001 < 2e-16 ***
Age 0.065509 0.009489 6.904 1.21e-11 ***
Htcm 0.041023 0.001873 21.901 < 2e-16 ***
GenderM 0.157103 0.033207 4.731 2.74e-06 ***
Smoke -0.087246 0.059254 -1.472 0.141

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.4122 on 649 degrees of freedom
Multiple R-squared: 0.7754, Adjusted R-squared: 0.774
F-statistic: 560 on 4 and 649 DF, p-value: < 2.2e-16

Since we have the exact same covariates, we can assess the two models by comparing their R2 statistics.
Since R2

B < R2
A, modelA is to be preferred if explanatory power is important.

Arguably, we should still choose modelB if it satisfies the error term normality condition, since this is an
important assumption of the linear regression model.

First, let’s look at the residual plots, reusing the code from before
library(gridExtra)
plot1 <- ggplot(modelB, aes(.fitted, .stdresid)) +

geom_point(pch = 21) +
geom_hline(yintercept = 0, linetype = "dashed") +
geom_smooth(se = FALSE, col = "red", size = 0.5, method = "loess") +
labs(

x = "Fitted values",
y = "Standardized residuals",
title = "Fitted values vs. Standardized residuals",
subtitle = deparse(modelB$call)

)
plot2 <- ggplot(modelB, aes(sample = .stdresid)) +

stat_qq(pch = 19) +
geom_abline(

intercept = 0,
slope = 1,
linetype = "dotted"

) +
labs(

x = "Theoretical quantiles",
y = "Standardized residuals",
title = "Normal Q-Q",
subtitle = deparse(modelB$call)

)
grid.arrange(plot1, plot2, ncol = 2)

7

−2

0

2

4

1 2 3 4

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(formula = FEV ~ Age + Htcm + Gender + Smoke, data = lungcap)

Fitted values vs. Standardized residuals

−2

0

2

4

−2 0 2

Theoretical quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(formula = FEV ~ Age + Htcm + Gender + Smoke, data = lungcap)

Normal Q−Q

These plots show a clear trend between fitted values and the standardized residuals, much more so than
modelA, while the Q-Q plot indicates a too light-tailed distribution. Lastly, let’s repeat the Anderson-Darling
normality test for modelB
ad.test(rstudent(modelB))

##
Anderson-Darling normality test
##
data: rstudent(modelB)
A = 1.2037, p-value = 0.003853

We can’t conclude that error normality is satisfied here, so we still choose modelA over modelB.

Q6:

We now want perform the following hypothesis test

H0 : βage = 0
vs.

H1 : βage 6= 0.

In order to test this, define the following t-distributed test statistic

Tage = β̂age − βage

ŜE(β̂age)
∼ tn−p−1.

The p-value for the test is defined by

8

p-value := P (Tage > tage)

We now calculate this value
n <- nobs(modelA)
p <- length(modelA$coefficients)
betaAge <- beta["Age"]
betaSE <- modelAEstimates$`Std. Error`[2]
tTestStatistic <- betaAge / betaSE
pValue <- 2 * pt(q = tTestStatistic, df = n - p - 1, lower.tail = FALSE)
pValue

Age
7.105907e-12

The p-value is ≈ 7.1 · 10−12, which coincides with the model summary output from earlier.

With a significance level of 0.01, the critical value (which gives the cut-off) can be compared with our
t-statistic.
alpha <- 0.01
criticalValue <- qt(p = alpha / 2, df = n - p - 1, lower.tail = FALSE)
kable(tibble("t-statistic" = tTestStatistic, "critical value" = criticalValue))

t-statistic critical value
6.984488 2.583438

We can reject the null-hypothesis and conclude that βage 6= 0.

Q7:

A 99% confidence interval for βage can be constructed with the same test statistic as above in the following
way

P (−tα/2,n−2 < Tage < tα/2,n−2) = 1− α

=⇒ P (−tα/2,n−2 <
β̂age − βage

ŜE(β̂age)
< tα/2,n−2) = 1− α

=⇒ P (β̂age − tα/2,n−2 · ŜE(β̂age) < βage < β̂age + tα/2,n−2 · ŜE(β̂age)) = 1− α

So we must find the interval β̂age ± tα/2,n−2 · ŜE(β̂age).
alpha <- 0.01
radius <- qt(p = alpha / 2, df = n - p - 2, lower.tail = FALSE) * betaSE
confidenceInterval <- tibble(lower = betaAge - radius, upper = betaAge + radius)
confidenceInterval %>% kable()

lower upper
0.0147367 0.0320378

A 99% confidence interval can be interpreted as an interval that has a 99% chance of covering the true
parameter value, βage. Notice that the 99% confidence interval for βage is entirely positive. We can therefore
relatively confidently conclude that age has a positive effect on FEV, as the multiplicative effect becomes
greater than one, which is really useful. This positive 99% interval (i.e. not containing 0) is also closely
related to the fact that we rejected the null-hypothesis at a 1% p-value cut-off in the previous task, since we
can say with ' 99% confidence that βage is nonzero.

Q8:

9

We now want to make a model prediction for a 16 year old non-smoking male of height 170 centimeters, x0.

First we want to predict a value for log(FEV) by calculating

̂log(FEV) = xT0 β̂

This can be done with the R-function predict() like this
new = data.frame(Age=16, Htcm=170, Gender="M", Smoke=0)
logPrediction <- as_tibble(

predict(
modelA,
newdata = new,
interval = "predict",
type = "response",
level = 0.95

)
) %>%

rename(
lower = lwr,
upper = upr

)
print(logPrediction$fit)

[1] 1.323802

Our best guess, based on modelA, for log(FEV) is thus ≈ 1.32.

We can also construct a confidence interval for this predicted logarithmic value by using the following formula
(given without proof)

[xT0 β̂ − tα/2,n−p−1σ̂
√

1 + xT0 (XTX)−1x0, xT0 β̂ + tα/2,n−p−1σ̂
√

1 + xT0 (XTX)−1x0],

.

and exponentially transform the interval in order to get a 95% prediction interval for FEV. We can use
predict() for this purpose as well
logInterval <- logPrediction[c("lower", "upper")]
FEVInterval <- exp(logInterval)
FEVInterval %>% kable()

lower upper
2.818373 5.010039

Our 95% prediction interval is [2.82, 5.01], which is a quite wide interval. If we compare this interval to our
FEV observations
summary(lungcap$FEV)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.791 1.981 2.547 2.637 3.119 5.793

the most useful thing we can conclude is that the individual likely has an above average FEV.

Problem 2: Classification

10

library(class)# for function knn
library(caret)# for confusion matrices

raw = read.csv("https://www.math.ntnu.no/emner/TMA4268/2019v/data/tennis.csv")
M = na.omit(

data.frame(
y = as.factor(raw$Result),
x1 = raw$ACE.1 - raw$UFE.1 - raw$DBF.1,
x2 = raw$ACE.2 - raw$UFE.2 - raw$DBF.2

)
)
set.seed(4268) # for reproducibility
tr <- sample.int(nrow(M), nrow(M) / 2)
trte <- rep(1, nrow(M))
trte[tr] <- 0
Mdf <- data.frame(M, "istest" = as.factor(trte))

Q9:

Define Nx to be the set of the K closest points to the point x = (x1, x2). The KNN istimator ŷ(x) ∈ {0, 1} is
determined by taking a “majority vote” of x’s N closest neighbors. The KNN estimate of the posterior class
probability becomes

P̂ (Y = y|X = x) = 1
K

∑
i∈Nx

I(yi = y) =
{

1
K

∑
i∈Nx

yi, if y = 1
1− 1

K

∑
i∈Nx

yi, if y = 0

And the Bayes classifier can be used to construct the estimator ŷ(x)

ŷ(x) =
{

1, if P̂ (Y = 1|X = x) ≥ 0.5
0, otherwise

Q10:

The training error rate is given by

1
ntrain

∑
i∈Jtrain

I(yi 6= ŷ(xi)),

where Jtrain is the set of ntrain indices defining the training set. Similarly the test error rate is given by

1
ntest

∑
i∈Jtest

I(yi 6= ŷ(xi))

We now calculate the error rates of the training and test sets for K = 1, 2, ..., 30 and plot these results.
dataset <- as_tibble(Mdf)
train <- dataset %>% filter(istest == "0") %>% select(x1, x2)
test <- dataset %>% filter(istest == "1") %>% select(x1, x2)

trainAnswers <- dataset %>% filter(istest == "0") %>% pull(y)
testAnswers <- dataset %>% filter(istest == "1") %>% pull(y)

11

train.e <- vector()
test.e <- vector()

knnErrorRates <- function(train, test, trainAnswers, testAnswers) {
errorRates <- vector()
for (k in 1:30) {

testPredictions <- class::knn(
train = train,
test = test,
cl = trainAnswers,
k = k

)
errorRates <- append(

errorRates,
mean(testPredictions != testAnswers)

)
}
return(errorRates)

}
test.e <- knnErrorRates(

train = train,
test = test,
trainAnswers = trainAnswers,
testAnswers = testAnswers

)
train.e <- knnErrorRates(

train = train,
test = train,
trainAnswers = trainAnswers,
testAnswers = trainAnswers

)
result <- tibble(

K = 1:30,
testError = test.e,
trainError = train.e

)

result %>% ggplot(aes(x = K)) +
geom_line(aes(y = testError, col = "Test set")) +
geom_line(aes(y = trainError, col = "Training set")) +
ylab("Error rate")

12

0.1

0.2

0.3

0 10 20 30

K

E
rr

or
 r

at
e colour

Test set

Training set

As expected, the training set has the lowest error rate for K = 1, since the model closely fits the training
data. The reason for the error not being exactly zero at K = 1 is due to duplicate x entries.

Q11:

We now calculate the cross-validation (CV) error using five folds.
set.seed(0)
Choose K from 1 to 30.
ks <- 1:30
Divide the training data into 5 folds.
idx <- createFolds(M[tr,1], k=5)
cv = sapply(

ks,
function(k){

sapply(
seq_along(idx),
function(j) {

yhat <- class::knn(
train = M[tr[-idx[[j]]], -1],
cl = M[tr[-idx[[j]]], 1],
test = M[tr[idx[[j]]], -1],
k = k

)
mean(M[tr[idx[[j]]], 1] != yhat)

}
)

}
)

13

Now we can calculate the average CV error, the standard error of the average CV error over the five folds,
and the K-value which corresponds to the smallest CV error.
cv.e <- colMeans(cv)
cv.se <- apply(cv, 2, sd) / sqrt(5)
k.min <- which.min(cv.e)
print(k.min)

[1] 22

Q12:

We now plot the misclassification errors.
library(colorspace)
co <- rainbow_hcl(3)
par(mar = c(4,4,1,1) + 0.1, mgp = c(3, 1, 0))
plot(ks, cv.e, type = "o", pch = 16, ylim = c(0, 0.7), col = co[2],

xlab = "Number of neighbors", ylab = "Misclassification error")
arrows(ks, cv.e-cv.se, ks, cv.e+cv.se, angle = 90, length = .03,

code = 3, col = co[2])
lines(ks, train.e, type = "o", pch = 16, ylim = c(0.5, 0.7), col = co[3])
lines(ks, test.e, type = "o", pch = 16, ylim = c(0.5, 0.7), col = co[1])
legend("topright", legend = c("Test", "5-fold CV", "Training"), lty = 1,

col = co)

0 5 10 15 20 25 30

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Number of neighbors

M
is

cl
as

si
fic

at
io

n
er

ro
r

Test
5−fold CV
Training

The bias of ŷ(x) will increase with increasing K, but the variance will decrease with increasing K. The
variance is high for K = 1 because only the nearest neighbours is used and noise will therefore affect the
model quite a lot. The bias is low for K = 1 because the model predictions will be very close to the training
data.

14

Q13:

A different strategy will now be used to choose K.
k <- tail(which(cv.e < cv.e[k.min] + cv.se[k.min]), 1)
size <- 100
xnew <- apply(M[tr,-1], 2, function(X) seq(min(X), max(X), length.out = size))
grid <- expand.grid(xnew[,1], xnew[,2])
grid.yhat <- knn(M[tr,-1], M[tr,1], k=k, test=grid)
np <- 300
par(mar = rep(2,4), mgp = c(1, 1, 0))
contour(xnew[,1], xnew[,2], z = matrix(grid.yhat, size), levels = .5,

xlab = expression("x"[1]), ylab = expression("x"[2]), axes = FALSE,
main = paste0(k,"-nearest neighbors"), cex = 1.2, labels = "")

points(grid, pch = ".", cex = 1, col = grid.yhat)
points(M[1:np,-1], col = factor(M[1:np,1]), pch = 1, lwd = 1.5)
legend("topleft", c("Player 1 wins", "Player 2 wins"),

col = c("red", "black"), pch = 1)
box()

30−nearest neighbors

x1

x 2

 Player 1 wins
Player 2 wins

The line of interest is
k <- tail(which(cv.e < cv.e[k.min] + cv.se[k.min]), 1)

Instead of choosing the K that results in the smallest CV error rate, K̂ := argmin CV(K), we instead choose
the greatest K which is within one standard deviation of K̂. More exactly,

K = max
K∗
{K∗ | CV(K∗) ≤ CV(K̂) + SE(K̂)}

15

This way, we are able to simplify our model within acceptable bounds from the minimal error.

Q14:

We now plot the receiver operating characteristics (ROC) curve.
K <- tail(which(cv.e < cv.e[k.min] + cv.se[k.min]), 1)

KNNclass <- class::knn(train = M[tr,-1], cl = M[tr,1], test = M[-tr,-1], k = K,prob=TRUE)
KNNprobwinning <- attributes(KNNclass)$prob
KNNprob <- ifelse(KNNclass == "0", 1-KNNprobwinning, KNNprobwinning)

library(pROC)
player1ROC <- roc(response = M[-tr, 1], predictor = KNNprob, legacy.axes = TRUE)
ROC <- tibble(

sensitivity = rev(player1ROC$sensitivities),
specificity = rev(player1ROC$specificities)

)

For stepribbon functionality
library(ggalt)
ROC %>% ggplot() +

geom_ribbon(
aes(

x = specificity,
ymin = 0,
ymax = sensitivity,
col = "AUC"

),
fill = "red",
alpha = 0.2,
stat = "stepribbon"

) +
geom_line(

data = tibble(x = c(1, 0), y = c(0, 1)),
aes(x = x, y = y, col = "Random guess"),
linetype = "dashed"

) +
geom_step(

aes(x = specificity, y = sensitivity, col = "ROC")
) +
labs(

title = "ROC curve",
caption = paste(

c("AUC=", signif(player1ROC$auc, 3), ", K=", K),
collapse = " "

)
) +
scale_x_reverse() +
coord_equal() +
ylab("sensitivity")

16

0.00

0.25

0.50

0.75

1.00

0.000.250.500.751.00

specificity

se
ns

iti
vi

ty

colour

AUC

Random guess

ROC

ROC curve

AUC= 0.818 , K= 30

This curve shows the relationship between the specificity and sensitivity of the model as the threshold
probability goes from 0 to 1, defined as

sensitivity := Number of true positives
Number of positives = TP

P

specificity := Number of true negatives
Number of negatives = TN

N

Thus, these extreme thresholds (probability cut-off) must therefore imply the following

threshold← 0 =⇒
{
sensitivity = 1
specificity = 0

threshold← 1 =⇒
{
sensitivity = 0
specificity = 1

The AUC ∈ [0, 1] is the area under the ROC curve. The best case scenario is when the ROC curve “hugs”
the upper left corner, resulting in AUC = 1. In our case, we have AUC ≈ 0.818.

Random guessing can be thought of as drawing samples u ∼ U(0, 1) and comparing it to the threshold
probability in order to make a prediction. Since P (u < p) = p, the resulting specificity-sensitivity graph
becomes a straight line (on average), and the AUC becomes 0.5.

A random guess classifier corresponds to a posterior distribution P(Y = 1|X = x) ∼ U(0, 1). This in turn
means that TP ∼ B〉\(P, 1− t), t being the threshold, and TN ∼ B〉\(N, t). Thus

17

E[sensitivity] = E
[
TP

P

]
= 1− t = 1− E

[
TN

N

]
= 1− E[specificity]

Which means that the ROC curve will be expected to lie on the green diagonal in the plot, which will result
in E[AUC] = 0.5

Q15:

We now plot the decision boundary of ỹ(x) = argmaxk, which is simply the line x1 = x2.
tb <- tibble(

x1 = M$x1,
x2 = M$x2,
y = M$y,
yHat = as.integer(M$x1 > M$x2),
istest = as.factor(trte)

)
p1WinsPoly <- tibble(

x1 = c(-100, 20, 20),
x2 = c(-100, -100, 20)

)
p2WinsPoly <- tibble(

x1 = c(-100, 20, -100),
x2 = c(-100, 20, 20)

)
tb %>% ggplot() +

aes(x = x1, y = x2) +
geom_polygon(

data = p1WinsPoly,
aes(x = x1, y = x2),
alpha = 0.2,
fill = "red"

) +
geom_polygon(

data = p2WinsPoly,
aes(x = x1, y = x2),
alpha = 0.2,
fill = "black"

) +
geom_point(

aes(col = y, x = x1, y = x2, shape = istest),
size = 1

) +
geom_abline(

aes(
slope = 1,
intercept = 0,
linetype = "Decision boundary"

)
) +
xlab(expression("x"[1])) +
ylab(expression("x"[2])) +
scale_color_manual(

name = "Ground truth",
labels = c("Player 2 wins", "Player 1 wins", ""),

18

values = c("black", "red", "gray")
) +
scale_linetype_manual(

name = "Argmax estimator",
labels = "Decision Boundary",
values = "dashed"

) +
scale_shape_manual(values = c(1, 2)) +
scale_x_continuous(limits = c(-100, 20), expand = c(0, 0)) +
scale_y_continuous(limits = c(-100, 20), expand = c(0, 0)) +
theme(

axis.ticks = element_blank(),
axis.text = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank()

)

x1

x 2

istest

0

1

Ground truth

Player 2 wins

Player 1 wins

Argmax estimator

Decision Boundary

Now we move onto the calculation of the confusion matrices and misclassification errors of ŷ(x) and ỹ(x).
train <- tb %>% slice(-tr)
argmaxConfMatrix <- confusionMatrix(table(train$yHat, train$y))
knnConfMatrix <- confusionMatrix(table(KNNclass, train$y))
print(argmaxConfMatrix)
print(knnConfMatrix)

Confusion Matrix and Statistics
##

19

##
0 1
0 149 47
1 45 153
##
Accuracy : 0.7665
95% CI : (0.7215, 0.8074)
No Information Rate : 0.5076
P-Value [Acc > NIR] : <2e-16
##
Kappa : 0.533
Mcnemar's Test P-Value : 0.917
##
Sensitivity : 0.7680
Specificity : 0.7650
Pos Pred Value : 0.7602
Neg Pred Value : 0.7727
Prevalence : 0.4924
Detection Rate : 0.3782
Detection Prevalence : 0.4975
Balanced Accuracy : 0.7665
##
'Positive' Class : 0
##
Confusion Matrix and Statistics
##
##
KNNclass 0 1
0 137 45
1 57 155
##
Accuracy : 0.7411
95% CI : (0.6949, 0.7837)
No Information Rate : 0.5076
P-Value [Acc > NIR] : <2e-16
##
Kappa : 0.4816
Mcnemar's Test P-Value : 0.2761
##
Sensitivity : 0.7062
Specificity : 0.7750
Pos Pred Value : 0.7527
Neg Pred Value : 0.7311
Prevalence : 0.4924
Detection Rate : 0.3477
Detection Prevalence : 0.4619
Balanced Accuracy : 0.7406
##
'Positive' Class : 0
##

These two predictors perform really similarly, since the 95% confidence interval for the accuracy is quite
overlapping. The KNN predictor has better specificity, while the argmax predictor has better sensitivity.
Neither specificity nor sensitivity is of particual interest, since the choice of player 1 is arbitrary, and it is a

20

“symmetric” problem. Hence, we prefer the argmax predictor since it has better overall accuracy.

Problem 3: Bias-variance trade-off
Q16:

Consider the least squares estimator for a linear regression model

β̂ = (XTX)−1XTY

First, let’s find the expected value for β̂. Here we will use that a linear combination, C, of a normal vector,
Y , satisfies E[CY] = CE[Y], and that E[ε] = 0:

E[β̂] = E
[
(XTX)−1XTY

]
= (XTX)−1XTE[Y]

= (XTX)−1XTE[Xβ + ε] = (XTX)−1XTXβ = β

This is an unbiased estimator.

Now onto the variance-covariance matrix for β̂. Here, we will use the fact that Cov(CY) = CCov(Y)CT , and
Cov(Y) = σ2I.

Cov(β̂) = Cov
(
(XTX)−1XTY

)
= (XTX)−1XTCov(Y)((XTX)−1XT)T

= (XTX)−1XTσ2I((XTX)−1XT)T = (XTX)−1σ2

So the result is that β̂ ∼ Nk+1(β, σ2(XTX)−1), k being the number of covariates in the model.

Q17:

Now, we find the expected value of f̂(x0).

E
[
f̂(x0)

]
= E

[
xT0 β̂

]
= xT0 E[β̂] = xT0 β = E[Y0]

So this is also an unbiased predictor.

Now, the variance of the predictor is

Var(f̂(x0)) = Var(xT0 β̂) = xT0 Cov(β̂)x0 = σ2xT0 (XTX)−1x0.

So, we have f̂(x0) ∼ N1(xT0 β, σ2xT0 (XTX)−1x0).

Q18:

We will use that for a random variable, Z, we have E
[
Z2] = Var(Z) + E[Z]2. Also, since Y0 and f̂(x0) are

independent, then E[Y0f̂(x0)] = E[Y0]E[f̂(x0)].

21

E[(Y0 − f̂(x0))2]

= E
[
Y 2

0 + f̂(x0)2 − 2Y0f̂(x0)
]

= E
[
Y 2

0
]

+ E
[
f̂(x0)2

]
− E

[
2Y0f̂(x0)

]
= Var(Y0) + E [Y0]2 + Var

(
f̂(x0)

)
+ E

[
f̂(x0)

]2
− 2 · E [Y0] E

[
f̂(x0)

]
= Var(Y0) + f(x0)2 + Var

(
f̂(x0)

)
+ E

[
f̂(x0)

]2
− 2 · f(x0)E

[
f̂(x0)

]
= Var(Y0) + Var

(
f̂(x0)

)
+
(

E
[
f̂(x0)

]
− f(x0)

)2

= σ2I + σ2xT0 (XTX)−1x0 + (xT0 β − xT0 β)2

= σ2I + σ2xT0 (XTX)−1x0 + 02

= Irreducible error + Variance + Bias2

The bias becomes zero as we have perfect knowledge about the true function f and a model that reflects this.

Q19:

We now look at the ridge estimator, β̃,

β̃ := (XTX + λI)−1XTY, λ ∈ [0,∞]

First, we calculate the expected value.

E
[
β̃
]

= E
[
(XTX + λI)−1XTY

]
= (XTX + λI)−1XTE [Y] = (XTX + λI)−1(XTX)β

Since β̃ 6= β̂, this is a biased estimator!

The variance becomes

Var(β̃) = Var
(
(XTX + λI)−1XTY

)
= (XTX + λI)−1XT Var(Y)

(
(XTX + λI)−1XT

)T
= σ2(XTX + λI)−1(XTX)(XTX + λI)−1.

So we end up with β̃ ∼ Nk+1
(
(XTX + λI)−1(XTX)β, σ2(XTX + λI)−1(XTX)(XTX + λI)−1).

Q20:

Now we find the expected value of the estimator f̃(x0) = xT0 β̃.

E
[
f̃(x0)

]
= E

[
xT0 β̃

]
= xT0 E

[
β̃
]

= xT0 (XTX + λI)−1(XTX)β

And the variance.

Var
(
f̃(x0)

)
= Var

(
xT0 β̃

)
= xT0 Cov

(
β̃
)
x0 = σ2xT0 (XTX + λI)−1(XTX)(XTX + λI)−1x0

And therefore we have f̃(x0) ∼ N1
(
xT0 (XTX + λI)−1(XTX)β, σ2xT0 (XTX + λI)−1(XTX)(XTX + λI)−1x0

)
.

22

Q21:

Again, we decompose the MSE, skipping the initial decomposition proof this time

E[(Y0 − f̃(x0))2]

=
(
E
[
f̃(x0)

]
− f(x0)

)2
+ Var

(
f̃(x0)

)
+ Var(ε)

=
(
xT0 (XTX + λI)−1(XTX)β − xT0 β

)2 + σ2xT0 (XTX + λI)−1(XTX)(XTX + λI)−1x0 + σ2I

= Bias2 + Variance + Irreducible error

We have therefore introduced a nonzero bias compared to the classical linear model.

Q22:

We will now fetch pre-calculated values for X, x0, β and σ.
values <- dget("https://www.math.ntnu.no/emner/TMA4268/2019v/data/BVtradeoffvalues.dd")
X <- values$X
dim(X)
x0 <- values$x0
dim(x0)
beta <- values$beta
dim(beta)
sigma <- values$sigma
sigma

[1] 100 81
[1] 81 1
[1] 81 1
[1] 0.5

And plot the squared bias of f̃(x0) as a function of λ.
sqbias <- function(lambda, X, x0, beta) {

p <- dim(X)[2]
XtX <- t(X) %*% X
lambdaI <- diag(x = lambda, nrow = p)
value <- (t(x0) %*% solve(XtX + lambdaI) %*% XtX %*% beta - t(x0) %*% beta) ** 2
return(value)

}
thislambda <- seq(0,2,length=500)
sqbiaslambda <- rep(NA,length(thislambda))
for (i in 1:length(thislambda)) {

sqbiaslambda[i] <- sqbias(thislambda[i],X,x0,beta)
}
plot(thislambda, sqbiaslambda, col = 2, type = "l")

23

0.0 0.5 1.0 1.5 2.0

0.
00

0.
05

0.
10

0.
15

0.
20

thislambda

sq
bi

as
la

m
bd

a

Since λ decreases the flexibility of the resulting model, we would expect the squared bias to increase as λ
increases. Asymptotically, the graph reflects this prediction, but there is a “dip” around the region [0.1, 0.5],
which is not exactly what we expected.

Q23:

We now plot the variance of f̃(x0) as a function of λ.
variance <- function(lambda, X, x0, sigma) {

p <- dim(X)[2]
inv <- solve(t(X)%*%X+lambda*diag(p))
value <- sigma ** 2 * t(x0) %*% inv %*% (t(X) %*% X) %*% inv %*% x0
return(value)

}
thislambda <- seq(0,2,length=500)
variancelambda <- rep(NA,length(thislambda))
for (i in 1:length(thislambda)) {

variancelambda[i] <- variance(thislambda[i], X, x0, sigma)
}
plot(thislambda, variancelambda, col = 4, type = "l")

24

0.0 0.5 1.0 1.5 2.0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

thislambda

va
ria

nc
el

am
bd

a

The plot looks like what we would expect, from the fact that as λ increases, then the diagonal λ matrix
becomes more dominant relative to the test data. This is in accordance with the bias-variance trade-off, since
the flexibility here decreases with increasing λ.

Q24:

We now plot all the MSE decompositions and the total MSE in the same figure.
tot <- sqbiaslambda+variancelambda+sigma^2
which.min(tot)
thislambda[which.min(tot)]
plot(thislambda, tot, col = 1, type = "l", ylim = c(0,max(tot)))
lines(thislambda, sqbiaslambda, col = 2)
lines(thislambda, variancelambda, col = 4)
lines(thislambda, rep(sigma^2,500), col = "orange")
abline(v = thislambda[which.min(tot)], col = 3)

25

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

thislambda

to
t

[1] 249
[1] 0.993988

The optimal λ is the one which minimizes the total test MSE, which in this case is λ ≈ 0.994.

26

	Problem 1: Multiple linear regression
	Problem 2: Classification
	Problem 3: Bias-variance trade-off

