
Exercise 1
Øyvind Klåpbakken

Jakob Gerhard Martinussen
January 18, 2019

Problem A: Stochastic simulation by the probability integral transform and bi-
variate techniques
1. Sampling from the exponential distribution

We want to generate n samples from the exponential distribution with rate parameter λ.
library(tidyverse)
library(magrittr)
library(numbers)

rexp <- function(n, rate = 1) {
uniformly_distributed <- runif(n=n)
exponentially_distributed <- -log(uniformly_distributed) / rate
return(enframe(exponentially_distributed))

}

samples <- 1000000
rate <- 1
exponential_samples <- rexp(n = samples, rate = rate)
ggplot() +

geom_histogram(
data = exponential_samples,
mapping = aes(x=value, y=..density..),
binwidth = 0.01,
boundary = 0

) +
geom_vline(

aes(xintercept = mean(exponential_samples$value))
) +
stat_function(

fun = dexp,
args=list(rate = rate),
aes(col='Theoretical density')

)

1

0.00

0.25

0.50

0.75

1.00

0 5 10 15

value

de
ns

ity colour

Theoretical density

results <- list(mean=1/rate,
sample_mean = mean(exponential_samples$value),
variance = 1/rate^2,
sample_variance = var(exponential_samples$value))

print(results)

$mean
[1] 1
##
$sample_mean
[1] 1.000579
##
$variance
[1] 1
##
$sample_variance
[1] 0.9993657

2. Probability density function

We now consider the probability density function

g(x) =

cxα−1, 0 < x < 1,
ce−x, 1 ≤ x,
0, otherwise,

where c is the normalising constant and α ∈ (0, 1). First we determine the normalising constant by integration,

2

1 =
∫
R
g(x)dx =

∫ 1

0
cxα−1dx+

∫ ∞
1

ce−xdx = c
α+ e

αe
=⇒ c = αe

α+ e

Inserting c into the density function yields

g(x) =

αe
α+ex

α−1, 0 < x < 1,
αe
α+ee

−x, 1 ≤ x,
0, otherwise.

(a) Cumulative distribution

The cumulative distribution can now be found

G(x) =
∫ x

0
g(y)dy =

0, x ≤ 0
e

α+ex
α, 0 < x < 1,

1− αe
α+ee

−x, 1 ≤ x.

Now we find the inverse of the cumulative distribution function. First for the case when G(x) < e
α+e

G(x) = e

α+ e
xα =⇒ x = α

√
α+ e

e
G(x)

And for G(x) > e
α+e we have

G(x) = 1− αe

α+ e
e−x =⇒ x = − ln

(
α+ e

αe
(1−G(x))

)
The inverse cumulative function thus becomes

G−1(x) =
{

α

√
α+e
e x, 0 ≤ x < e

α+e ,

− ln
(
α+e
αe (1− x)

)
, e

α+e ≤ x ≤ 1.

The expectation is given by E(X) =
∫∞
−∞ xg(x)dx = c

∫ 1
0 x

αdx+ c
∫∞

1 xe−x = c
(

1
α+1 + 2

e

)
.

The variance is given V ar(X) = E(X2) − E(X)2, where E(X2) =
∫∞
−∞ x2g(x)dx = c

∫ 1
0 x

α+1dx +
c
∫∞

1 x2e−x = c
(

1
α+2 + 5

e

)
.

The expression for the variance becomes V ar(X) = c
(

1
α+2 + 5

e

)
− c2

(
1

α+1 + 2
e

)2

(b) Sampling from g(x)

We now want to generate random samples from g(x). Since we know the inverse of the cumulative distribution,
we can use the inverse transform technique.
rg <- function(n, alpha = 1) {

u <- runif(n = n)
boundary <- exp(1) / (alpha + exp(1))
left <- u < boundary
right <- !left
u[left] <- (u[left] / boundary) ** (1 / alpha)
u[right] <- -log((1 - u[right]) / (boundary * alpha))
return(enframe(u))

}

3

We also implement the density function for the purpose of comparison
dg <- function(x, alpha = 1) {

normalizing_constant <- alpha * exp(1) / (alpha + exp(1))
d <- rep(0, length(x))
left_indices <- 0 < x & x < 1
right_indices <- 1 <= x
d[left_indices] <- normalizing_constant * (x[left_indices] ** (alpha - 1))
d[right_indices] <- normalizing_constant * exp(-x[right_indices])
return(d)

}

We now compare one million random samples generated with this sampling technique and compare it with
the theoretical density
samples <- 1000000
alpha <- 0.7
g_samples <- rg(n = samples, alpha = alpha)
ggplot() +

geom_histogram(
data = g_samples,
mapping = aes(x=value, y=..density..),
binwidth = 0.01,
boundary = 0

) + stat_function(
fun = dg,
args = list(alpha = alpha),
aes(col = 'Theoretical density.')

) +
geom_vline(

aes(
xintercept = mean(g_samples$value),
col = 'Empirical mean'

)
) +
ylim(0, 1) +
xlim(0, 5)

4

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5

value

de
ns

ity

colour

Empirical mean

Theoretical density.

c <- alpha*exp(1)/(alpha + exp(1))
mean <- c*(1/(alpha + 1) + 2/exp(1))
second_moment <- c*(1/(alpha+2) + 5/exp(1))
variance <- second_moment - mean^2

results <- list(
mean=mean,
sample_mean = mean(g_samples %>% use_series(value)),
variance = variance,
sample_variance = var(g_samples %>% use_series(value)))

print(results)

$mean
[1] 0.7370055
##
$sample_mean
[1] 0.7345135
##
$variance
[1] 0.6868969
##
$sample_variance
[1] 0.6779079

5

3. Box-Muller algorithm for standard normal distribution

box_muller <- function(n){
x1 <- runif((n+1)/2)*2*pi
x2 <- rexp((n+1)/2, rate=1/2) %>% use_series(value)
y1 <- map2_dbl(x2, x1, ~sqrt(.x)*cos(.y))
y2 <- map2_dbl(x2, x1, ~sqrt(.x)*sin(.y))
return(c(y1, y2)[1:n])

}

dnorm_std <- partial(dnorm, mean = 0, sd = 1)
n <- 1000000
x <- box_muller(n)

sample <- tibble(value = x)
results <- list(mean = 0,

sample_mean = mean(x),
variance = 1,
sample_variance = var(x))

box_muller_plot <- sample %>%
ggplot() +
geom_histogram(aes(x=value, y=..density..), binwidth=0.05) +
stat_function(fun=dnorm_std, color="red", size=1)

print(box_muller_plot)

0.0

0.1

0.2

0.3

0.4

−5.0 −2.5 0.0 2.5 5.0

value

de
ns

ity

6

print(results)

$mean
[1] 0
##
$sample_mean
[1] 0.0004133461
##
$variance
[1] 1
##
$sample_variance
[1] 0.9994034

4. Arbitrary normal distribution

multivariate_normal <- function(mean, covariance, n){
d <- length(mean)
A <- chol(covariance)

xs <- rerun(n, box_muller(d))
y <- map(xs, ~A%*%.x + mean)

return(y)
}

The implementation is tested with d = 3, µ = [1, 4, 2]T and Σ = 3I3. The empirical mean and covariance
matrix is shown to agree with the specified theoretical mean and covariance matrix.
mean <- c(1,4,2)
covariance <- diag(3)*3
n <- 10000

sample <- multivariate_normal(mean, covariance, n)

sample_tbl <- sample %>%
map(t) %>%
map(as_tibble) %>%
bind_rows()

sample_mean <- sample_tbl %>%
colMeans()

sample_covariance <- sample_tbl %>%
cov()

results <- list(mean=mean,
sample_mean=as.numeric(sample_mean),
covariance=covariance,
sample_covariance=as.matrix(sample_covariance))

colnames(results$sample_covariance) <- NULL
rownames(results$sample_covariance) <- NULL
print(results)

$mean

7

[1] 1 4 2
##
$sample_mean
[1] 1.019935 4.007895 1.994632
##
$covariance
[,1] [,2] [,3]
[1,] 3 0 0
[2,] 0 3 0
[3,] 0 0 3
##
$sample_covariance
[,1] [,2] [,3]
[1,] 3.0107516 -0.01888260 -0.04014330
[2,] -0.0188826 3.01148359 -0.04489787
[3,] -0.0401433 -0.04489787 2.94197416

8

Problem B: The gamma distribution
1. Rejection sampling

(a) Acceptance probability
The acceptance probability is the inverse of the constant c used in the rejection-sampling algorithm. The
constant c is chosen to be the smallest value that satisfies c ≥ f(x)

g(x) .

With f(x) = 1
Γ(α)x

α−1e−x and g(x) as specified in A.2, we must choose c such that

c ≥ f(x)
g(x) =

{
1

Γ(α)
α+e
eα

1
ex , 0 < x < 1

1
Γ(α)

α+e
eα xα−1, x ≥ 1

This functions attains it’s maximum at x = 1, where we find f(x)
g(x) |x=1= 1

Γ(α)
α+e
eα and by choosing c = f(x)

g(x) |x=1

we satisfy the criterion above. This leads to the acceptance probability Γ(α) eα
e+α .

(b) Rejection-sampling implementation

n <- 1000000
alpha <- 0.8

rejection_sampling_f <- function(n, alpha){
dg_fixed <- partial(dg, alpha=alpha)
df <- as_mapper(~1/gamma(alpha)*.x^(alpha - 1)*exp(-.x))
c <- (alpha + exp(1))/(alpha*exp(1))/gamma(alpha)

n_remaining <- n
samples <- vector()

while (n_remaining > 0){
acceptance_threshold_mapper <- as_mapper(~1/c*df(.x)/dg_fixed(.x))

xs <- rg(n_remaining, alpha=alpha) %>% use_series(value)
acceptance_threshold <- xs %>% map_dbl(acceptance_threshold_mapper)

accepted_xs <- xs %>%
keep(runif(n_remaining) < acceptance_threshold) %>%
enframe()

samples <- c(samples, accepted_xs$value)

n_remaining <- n_remaining - nrow(accepted_xs)
}
return(samples)

}

samples <- rejection_sampling_f(n, alpha)

df <- as_mapper(~1/gamma(alpha)*.x^(alpha - 1)*exp(-.x))
dg_fixed <- partial(dg, alpha=alpha)
c <- (alpha + exp(1))/(alpha*exp(1))/gamma(alpha)
dg_scaled <- as_mapper(~dg_fixed(.x)*c)

ggplot(samples %>% enframe()) +

9

geom_histogram(aes(x=value, y=..density..), binwidth=0.05, boundary=0) +
stat_function(fun=df, color='red', size=1) +
stat_function(fun=dg_scaled, color='blue', size=1, linetype="dashed") +
ylim(0, 1) +
xlim(0, NA)

0.00

0.25

0.50

0.75

1.00

0 5 10

value

de
ns

ity

results = list(mean=alpha,
sample_mean=mean(samples),
variance=alpha,
sample_variance=var(samples))

print(paste("Acceptance probability:", 1/c))

[1] "Acceptance probability: 0.719602267077657"

print(results)

$mean
[1] 0.8
##
$sample_mean
[1] 0.7992622
##
$variance
[1] 0.8
##
$sample_variance
[1] 0.7990012

10

2. Ratio of uniforms method

(a)
To find the values of a and b+ we take the of derivative of f?(x) and x2f?(x)and set it equal to zero. This
gives us the values for which the two functions are maximized. By evaluating the functions at these points,
x =

√
α− 1 and x =

√
α+ 1 respectively, one obtains that a =

√(
α−1
e

)α−1 and b+ =
√(

α+1
e

)α+1. The
function f?(x) is zero for x ≤ 0, so it’s supremum is 0 in this region, giving us b− = 0.

Neither the values of a and b+ nor the function f?(x) is easy to evaluate numerically for high values of α.
This problem is solved by sampling directly from the distribution of Y1 = log(X1) and Y2 = log(X2), and
proceeding by checking whether the values of Y1 and Y2 is such that (X1, X2) falls within the region Cf . X1
and X2 are uniformly distributed on the intervals with [0, α] and [b−, b+] respectively.

The condition on a realization of Y for checking whether X is in Cf becomes

y1 = log(x1) ≤ 1
2

[
(α− 1)(log(x2)− log(x1))− elog(x2)−log(x1)

]
To be able to sample from the distribution of Y we need to find the inverse cumulative distribution function.
The distribution function of Y1 is given by fY1(x) = ex−log(a)1{x≤log(a)}. The cumulative distribution is given
by FY1(x) = ex−log(a). Setting u = FY1(x) yields x = log(u) + log(a). In an equivalent fashion, we obtain
x = log(u) + log(b+) for sampling from the distribution of Y2.
alpha <- 500
n <- 10000000

ratio_of_uniforms_f <- function(n, alpha){
n_remaining <- n
attempts <- 0
samples <- vector()

log_a <- (alpha - 1)/2*log((alpha - 1)/exp(1))
log_b_plus <- (alpha + 1)/2*log((alpha + 1)/exp(1))

while (n_remaining > 0) {
log_x1 <- runif(n_remaining) %>% log() %>% add(log_a)
log_x2 <- runif(n_remaining) %>% log() %>% add(log_b_plus)
random_samples <- tibble(log_x1, log_x2)

random_samples <- random_samples %>%
mutate(upperBound = ((alpha - 1)*(log_x2 - log_x1)

- exp(log_x2 - log_x1))/2) %>%
mutate(inRegion = log_x1 <= upperBound)

accepted_samples <- random_samples %>%
filter(inRegion == TRUE) %>%
mutate(y = exp(log_x2 - log_x1))

samples <- c(samples, accepted_samples$y)
attempts <- attempts + n_remaining
n_remaining <- n_remaining - nrow(accepted_samples)

}
return(list(samples=samples, attempts=attempts))

}

11

alphas <- seq(2,2000, 50)
rf_n <- partial(ratio_of_uniforms_f, n=1000)
attempts_df <- tibble(alpha=alphas, attempts = alphas %>% map_dbl(~rf_n(.x)$attempts))
attempts_df %>%

ggplot(aes(x=alpha, y=attempts)) +
geom_point() +
geom_smooth()

0

10000

20000

30000

0 500 1000 1500 2000

alpha

at
te

m
pt

s

accepted_samples <- ratio_of_uniforms_f(n, alpha)$samples %>%
enframe() %>%
set_names(c('idx', 'y'))

accepted_samples %>%
ggplot() +
geom_histogram(aes(x=y, y=..density..), binwidth=0.2) +
stat_function(aes(x=y), fun = dgamma, args = list(shape = alpha, scale = 1), color='red')

12

0.000

0.005

0.010

0.015

400 450 500 550 600

y

de
ns

ity

results <- list(mean=alpha,
sample_mean=mean(accepted_samples$y),
variance=alpha,
sample_variance=var(accepted_samples$y))

print(results)

$mean
[1] 500
##
$sample_mean
[1] 500.0028
##
$variance
[1] 500
##
$sample_variance
[1] 499.8097

The plot above shows how the acceptance probability decreases as the value of α increases. This happens
because the proportion of the total area [0, a]× [b−, b+] covered by Cf shrinks as α increases. It can be seen
from the plot that the proportion shrinks more rapidly when the value of α is still comparatively small, but
tapers off as α approaches α = 2000.

13

3. Arbitrary gamma function

alpha <- 50
beta <- 10

random_sample_from_f <- function(n, alpha, beta){
if (alpha < 1){

result <- rejection_sampling_f(n, alpha)
}
else if (alpha == 1){

result <- rexp(n, rate=1)$value
}
else{

result <- ratio_of_uniforms_f(n, alpha)$samples
}
return(result/beta)

}

sample <- random_sample_from_f(1000000, alpha, beta)
sample %>%

enframe() %>%
ggplot() +
geom_histogram(aes(x=value, y=..density..), binwidth=0.05) +
stat_function(fun = partial(dgamma, shape=alpha, rate=beta), color='red', size=1)

0.0

0.2

0.4

2 4 6 8

value

de
ns

ity

14

results <- list(mean = alpha/beta,
sample_mean = mean(sample),
variance = alpha/beta^2,
sample_variance = var(sample))

print(results)

$mean
[1] 5
##
$sample_mean
[1] 4.998608
##
$variance
[1] 0.5
##
$sample_variance
[1] 0.5000519

15

Problem C: The Dirichlet distribution: simulating using known relations
Define the K dimensional stochastic vector ~x := (x1, ..., xK) where xk ∈ [0, 1] and

∑K
x=1 xk = 1. Since

xK is determined by (x1, ..., xK−1), define x̃ := (x1, ..., xK−1). Also, define the the parameter vector
~α = (α1, ..., αK).

The vector ~x is said to have a Dirichlet distribution with parameter ~α when the probability density for x̃ is
given by

f(x̃; ~α) =
Γ(
∑K
k=1 αk)∏K
k=1 αk

·
(K−1∏
k=1

xαk−1
k

)
·
(

1−
K−1∑
k=1

xk

)αK−1

for x1, ..., xK−1 > 0 and
∑K−1
k=1 xk < 1.

1. Theory

Define a new K-dimensional stochastic vector ~z := (z1, ...zK) where zk ∼ gamma(αk, 1), where zk are
independently distributed. We will now show that the transformation

xk = zk∑K
k=1 zk

results in ~x being Dirichlet distributed with parameter vector ~α.

Since the zk’s are identically and independently distributed, the joint distribution can be found by

fzk(zk;αk) =
zαk−1
k e−zk

Γ(αk) =⇒ fz(~z; ~α) =
K∏
k=1

fzk(zk;αk) =
K∏
k=1

(
zαk−1
k

Γ(αk)

)
e−v

v :=
K∑
k=1

zk.

Now, perform a transformation, h, of the variable ~z to (x1, ..., xK−1, v), with v as defined above. This yields

zk = hk(xk, v) = vxk, k ∈ {0 . . . ,K − 1}

zK = hK(x̃, v) = v(1−
K−1∑
k=1

xk)

The change-of-variables formula gives the new joint distribution as

fx(x̃, v; ~α) = fz(~z; ~α) · |J |,

where |J | is the determinant of the Jacobian. It is defined by

Jj,k = dzk
dxj

,

for row j and column k. For brevity’s sake we’ve defined xK := v in order to make the above expression hold
for all j, k.

The elements of the Jacobian can be found by calculating dhk
dxj

in four distinct cases.

16

dhk
dxj

= dvxj
dxj

=
{
v, k = j

0, k 6= j
, k, j ∈ {1, . . . ,K − 1}

dhK
dxj

= d

dxj
v

(
1−

K−1∑
k=1

xk

)
= −v, j ∈ {1, . . . ,K − 1}

dhk
dv

= d

dv
vxk = xk, k ∈ {1, . . . ,K − 1}

dhK
dv

= d

dv
v

(
1−

K−1∑
k=1

xk

)
= 1−

K−1∑
k=1

xk

The Jacobian matrix can be reduced to upper triangular form by K − 1 row additions without changing its
determinant. The determinant of an upper triangular matrix is the product of its diagonal entries, which
results in

det

v 0 . . . 0 x1
0 v . . . 0 x2
...

...
. . .

...
...

0 0 . . . v xK−1
−v −v . . . −v 1−

∑K−1
k=1 xk

 = det

v 0 . . . 0 x1
0 v . . . 0 x2
...

...
. . .

...
...

0 0 . . . v xK−1
0 0 . . . 0 1

 = vk−1

Inserting the expressions zk, k = 0, . . . ,K into fz(~z; ~α) yields

fz(x̃, v; ~α) =
∏K−1
k=1 xαk−1

k∏K
k=1 Γ(αk)

(
1−

K−1∑
k=1

xk

)αK−1
v
∑K

k=1
αk

vK
e−v

Multiplying by this by the Jacobian leaves us with

fz(x̃, v; ~α) =
∏K−1
k=1 xαk−1

k∏K
k=1 Γ(αk)

(
1−

K−1∑
k=1

xk

)αK−1

v
∑K

k=1
αk−1e−v

We recognize the two latter terms as the kernel of the gamma function, and by integrating out v we obtain

f(x̃; ~α) =
∫ ∞

0
fz(x̃, v; ~α)dv =

∏K−1
k=1 xαk−1

k∏K
k=1 Γ(αk)

(
1−

K−1∑
k=1

xk

)αK−1 ∫ ∞
0

v
∑K

k=1
αk−1e−vdv

=⇒ f(x̃; ~α) =
∏K−1
k=1 xαk−1

k∏K
k=1 Γ(αk)

(
1−

K−1∑
k=1

xk

)αK−1

Γ
(

K∑
k=1

αk

)
This is the Dirichlet distribution, as we wanted to show.

2. Implementation

We will now implement a random sampling algorithm for the Dirichlet distribution, as explained above.
rdirichlet <- function(n, alpha) {

Dimension of Dirichlet distribution
K <- length(alpha)

A tibble which will contain samples from Gamma(alpha_k, 1)
zValues <- tibble(n = seq(1, n))

17

for (k in seq_along(alpha)) {
Generate n samples from Gamma(alpha_k, 1)
z <- random_sample_from_f(

n = n,
alpha = alpha[k],
beta = 1

)

Add these values to column named x_k,
since they will be transformed z_k -> x_k later
zValues <- add_column(

zValues,
!!(paste("x_", toString(k), sep = "")) := z

)
}

Delete unnecessary column named "n"
zValues <- zValues[-1]

Find v, the sum of the z_k's
v <- rowSums(zValues)

Perform variable transformation z_k -> x_k
xValues <- zValues / v

Return these values, they are now Dirichlet distributed
return(xValues)

}

In order to validate the algorithm, we will draw 10 million samples with ~α = (1, 3, 7, 10). The sample mean
and variance can be compared to the theoretical mean and variance, which are given without proof

E[Xk] = αk
α0

Var(Xk) = αk(α0 − αk)
α2

0(α0 + 1) α0 :=
K∑
k=1

αk

N <- 10000000
alpha <- c(1, 3, 7, 10)
alphaSum <- sum(alpha)
expectedMean <- alpha / alphaSum
expectedVariance <- alpha * (alphaSum - alpha) / (alphaSum ** 2 * (alphaSum + 1))

xValues <- rdirichlet(n = N, alpha = alpha)
sampleMean <- colMeans(xValues)
sampleVariance <- sapply(xValues, var)

comparison <- tibble(
x = c("x_1", "x_2", "x_3", "x_4"),
sampleMean = sampleMean,
expectedMean = expectedMean,
sampleVariance = sampleVariance,
expectedVariance = expectedVariance

)

18

Table 1: Dirichlet sample statistics comparison
x Sample mean Theoretical mean Sample variance Theoretical variance
x1 0.0476013 0.0476190 0.0020606 0.0020614
x2 0.1428174 0.1428571 0.0055636 0.0055659
x3 0.3332926 0.3333333 0.0101027 0.0101010
x4 0.4762887 0.4761905 0.0113395 0.0113379

comparison %>%
kable(

caption = "Dirichlet sample statistics comparison",
col.names = c(

"x",
"Sample mean",
"Theoretical mean",
"Sample variance",
"Theoretical variance"

),
escape = FALSE

)

Both the sample mean and variance is well within acceptable bounds from the theoretical values. We therefore
conclude that the implementation is correct.

19

Table 2: Table 1: Genetic linkage data
Cell count Probability
y1 = 125 1

2 + θ
4

y2 = 18 1−θ
4

y3 = 20 1−θ
4

y4 = 34 θ
4

Problem D: Rejection sampling and importance sampling
We now consider a specific recombination rate in genetics given by the data of Rao, C. R. (1973). 197 counts
are classified into four categories, ~y = (y1, y2, y3, y4). These are assumed to be multinomially distributed, and
the data is given in Table 1.

The multinomial mass function is given, proportionally, by

f(~y|θ) ∝ (2 + θ)y1(1− θ)y2+y3θy4 .

Using Beta(1, 1) as a prior for θ, i.e. a uniform prior, yields the following posterior density

f(θ|~y) = d · h(θ|~y)h(θ) := (2 + θ)y1(1− θ)y2+y3θy4d :=
∫ 1

0
h(θ|~y)dθ > 0

Here we have introduced the unknown normalizing constant d for h(θ|~y).

1. Rejection sampling algorithm

We will now implement the rejection sampling algorithm for f(θ|~y). The proposal density, g(θ|~y), is chosen
to be the uniform distribution U(0, 1). Thus,

g(θ|~y) ≡ 1.

The acceptance probability thus becomes

α = 1
c
· f(θ)
g(θ) = d

c
· h(θ|~y) ∈ [0, 1].

Notice that neither c nor d are known to us, but we can numerically approximate their proportion as

1
β

:= c

d
= max

θ
h(θ|~y)

Such that the acceptance probability can be written as

α = β · h(θ|~y)

We now implement a function constructor, which given ~y, returns f̂(θ) such that maxθ f̂(θ) = 1.
construct_f <- function(y) {

#' Return proportional distribution function for f which satisfies max(f) = 1

Proportional function of f in log-space
unscaled_log_f <- function(theta) {

20

y[1] * log(2 + theta) + (y[2] + y[3]) * log(1 - theta) + y[4] * log(theta)
}

Find the maxima of this function in log-space
log_maxima <- optimize(

f = unscaled_log_f,
maximum = TRUE,
interval = c(0, 1)

)$objective

Scale f to have max value 1
NB! This does not integrate to 1, so it is not a proper density function!
You can use make_density for that purpose.
scaled_f <- function(theta) {

return(exp(unscaled_log_f(theta) - log_maxima))
}
return(scaled_f)

}

Remember that this is not a proper density function, as it does not integrate to 1. Another function
constructor can be implemented to normalize f̂ . We will use this function later for plotting comparisons.
make_density <- function(f, lower = 0, upper = 1) {

#' Given f, returns a new function which integrates to 1 over the given interval
normalizer = integrate(f, lower = lower, upper = upper)$value
normalized_function <- function(...) {

return(f(...) / normalizer)
}
return(normalized_function)

}

We can now implement the rejection sampling algorithm, using the constructor function. The function will
also return the total number of generated proposals, which will be used in subtask c).
sample_theta <- function(n, y) {

#' Generate n theta samples from f function, given 4-vector y
#' Returns a list with thetas key to $theta,
#' and the number of tries keyed to $tries.
f_density <- construct_f(y = y)
found <- vector()
tries <- 0
while(length(found) < n) {

Number of samples that remain to be found
remaining <- n - length(found)
tries <- tries + remaining

These are proposed values that might be accepted...
x <- runif(remaining)

... with acceptance probability
alpha <- f_density(x)

Append the values that get accepted
u <- runif(remaining)
success <- u <= alpha

21

found <- c(found, x[success])
}
return(list(theta = found, tries = tries))

}

We can now plot the acceptance probability, α, as a function of θ. We will here use ~y = (125, 18, 20, 34), as in
the provided dataset.
y <- c(125, 18, 20, 34)
f_scaled_density <- construct_f(y = y)
df <- enframe(rnorm(1))
ggplot(data = df) + aes(x = value) +

stat_function(
fun = f_scaled_density,
xlim = c(0, 1),
mapping = aes(col = 'Acceptance probability'),
geom = "area",
fill = "gray"

) +
geom_hline (

yintercept = 1,
mapping = aes(col = 'Uniform distribution')

) +
scale_y_continuous(

name = expression(alpha)
) +
scale_x_continuous(

name = expression(theta)
) +
labs(

caption = "Acceptance probability as a function of proposed parameter theta."
)

22

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
θ

α

colour

Acceptance probability

Acceptance probability as a function of proposed parameter theta.

We can now observe that the rejection algorithm will sample values mostly within the interval [0.5, 0.75].
Realized samples will be investigated in the following section.

2. Posterior mean by Monte-Carlo integration

Now we sample ten million samples, θi, from the implemented rejection algorithm.
M <- 10000000
theta_sampling_result <- sample_theta(n = M, y = y)
theta_samples <- enframe(theta_sampling_result$theta)

The posterior mean can be practically derived from the samples as

E
[
θ | p(θ) ∼ U(0, 1)

]
≈ 1
M

M∑
i=1

θi

Or equivalently, in R
thetaSampleMean <- mean(theta_samples$value)

In order to check the correctness of the rejection sampling algorithm, we can approximate the posterior mean
by numerically solving the integral

E
[
θ | p(θ) ∼ U(0, 1)

]
=
∫ 1

0
θ · f(θ|~y) dθ.

This is done by using the integrate R function

23

f_density <- make_density(f_scaled_density)
thetaExpectedMean <- integrate(

f = function(theta) theta * f_density(theta),
lower = 0,
upper = 1

)$value

All these results can now be shown in a comparison plot.
means <- tibble(

xint = c(thetaSampleMean, thetaExpectedMean),
grp = c("Sample mean", "Numerical mean")

)
binWidth = 0.001
theta_samples %>%

ggplot() +
geom_histogram(

mapping = aes(x = value, y = ..density..),
binwidth = binWidth,
boundary = 0,
size = 0

) +
geom_vline(

data = means,
aes(

xintercept = xint,
col = grp,
linetype = c("dashed", "dotted")

)
) +
stat_function(

fun = f_density,
xlim = c(0, 1),
aes(col = 'Theoretical density')

) +
guides(linetype = FALSE) +
scale_x_continuous(

name = expression(theta),
limits = c(0, 1)

) +
labs(

title = "Histogram of parameter samples",
caption = "The histogram of the samples is colored in grey."

)

24

Table 3: Table 2: Posterior mean calculation comparison
Posterior mean Method

0.6228080 Sample mean
0.6228061 Numerical mean

0

2

4

6

8

0.00 0.25 0.50 0.75 1.00
θ

de
ns

ity

grp

Numerical mean

Sample mean

Theoretical density

Histogram of parameter samples

The histogram of the samples is colored in grey.

The sample histogram, which is colored in grey, perfectly coincides with the theoretical density. This is what
we would expect with ten million samples. The same can be said of the sample mean and numerical mean.
We can therefore conclude that the rejection sampling algorithm has been correctly implemented.

The calculated posterior means are shown in the following table.
means %>%

kable(
col.names = c("Posterior mean", "Method"),
caption = "Table 2: Posterior mean calculation comparison"

)

These values are close enough to conclude that the implementation is correct.

3. Required iterations for one sample

The overall acceptance rate for the rejection sampling algorithm is c−1. We would therefore expect, on
average, to generate c samples before one is accepted. Since U(0, 1) is used as the proposal density, we can
numerically calculate c as

25

Table 4: Table 3: Required proposals for each accepted sample
Method Required proposals
Sampling 7.800810
Theoretical 7.799308

c = max
θ∈[0,1]

f(θ|~y)

We can compare this theoretical result with the numerical one, calculated earlier
average_theta_tries <- theta_sampling_result$tries / M
cNumeric = optimize(

f = f_density,
interval = c(0, 1),
maximum = TRUE

)$objective
attempts <- tibble(

method = c("Sampling", "Theoretical"),
attempts = c(average_theta_tries, cNumeric)

)
attempts %>%

kable(
caption = "Table 3: Required proposals for each accepted sample",
col.names = c("Method", "Required proposals")

)

The acceptance rate is close to the theoretical optimal. We have now confirmed both the validity and
optimality of the implemented algorithm within the bounds of the assigned problem.

4. New prior

Previously, we used the prior of theta to be p(θ) ∼ Beta(1, 1) ≡ 1. Now denote the posterior distribution for
this prior as

f1,1(~y|θ) ∝ (2 + θ)y1(1− θ)y2+y3θy4

Now we want to investigate the posterior mean under a new prior for θ, Beta(1, 5). We can compare these
prior distributions as follows
alpha <- 1
beta <- 5
tibble(x = c(0, 1)) %>%

ggplot(aes(x)) +
stat_function(

fun = partial(dbeta, shape1 = alpha, shape2 = beta),
aes(col = "Beta(1, 5)")

) +
stat_function(

fun = partial(dbeta, shape1 = 1, shape2 = 1),
aes(col = "Beta(1, 1)")

) +
scale_x_continuous(

name = expression(theta)

26

) +
scale_y_continuous(

name = expression(p(theta)),
limits = c(0, NA)

) +
labs(

title = "Comparison of prior distributions"
)

0

1

2

3

4

5

0.00 0.25 0.50 0.75 1.00
θ

p(
θ)

colour

Beta(1, 1)

Beta(1, 5)

Comparison of prior distributions

As you can see, this new Beta(1, 5) prior heavily favours lower values for θ, compared to the uniform prior,
which does not favour any domain in particular. We can therefore expect a lower posterior mean under the
new prior.

The new posterior distribution is denoted as

f1,5(~y|θ) ∝ (2 + θ)y1(1− θ)y2+y3+4θy4

We can now use importance sampling weights in order to “resample” our existing samples from the old
posterior distribution to the new one. f1,1 is therefore our proposal density, and f1,5 our target density. The
importance sampling weight becomes

w(θi) = f1,5(θi)
f1,1(θi)

∝ (1− θ)4

In order to calculate the posterior mean under the new prior, we use the identity function as the objective
function h(θi) = θi.

27

Since neither f1,1 nor f1,5 are normalized, we use self-normalizing importance sampling in order to calculate
the new posterior mean

E
[
θ | p(θ) ∼ Beta(1, 5)

]
=
∑M
i=1 h(θi)w(θi)∑M

i=1 w(θi)

We implement this in R, and “resample” the M previously generated samples.
posteriorMean <- function(theta_samples, beta = 5) {

weights <- (1 - theta_samples) ** (beta - 1)
importanceThetaMean <- sum(theta_samples * weights) / sum(weights)
return(importanceThetaMean)

}
importanceThetaMean <- posteriorMean(theta_samples = theta_samples$value)

Again, for comparison, we implement the posterior densities for the old and new prior, and calculate the
expected posterior mean by numerical integration.

E
[
θ | p(θ) ∼ Beta(1, 5)

]
=
∫ 1

0
θ · f(θ|~y)(1− θ)4 dθ.

generatePosterior <- function(y, alpha = 1, beta = 5) {
log_unscaled = function(theta) {

y[1] * log(2 + theta) + (y[2] + y[3] + beta - 1) * log(1 - theta) + (y[4] + alpha - 1) * log(theta)
}
normalizingConstant <- integrate(

f = function(theta) exp(log_unscaled(theta)),
lower = 0,
upper = 1

)$value
scaledPosterior <- function(theta) {

return(exp(log_unscaled(theta)) / normalizingConstant)
}
return(scaledPosterior)

}
newPosterior <- generatePosterior(y = y, beta = 5)
newPosteriorIntegralMean <- integrate(

f = function(theta) theta * newPosterior(theta),
lower = 0,
upper = 1

)$value

oldPosterior <- generatePosterior(y = y, beta = 1)
oldPosteriorIntegralMean <- integrate(

f = function(theta) theta * oldPosterior(theta),
lower = 0,
upper = 1

)$value

We now have two different posterior densities, which are compared in the following plot
meanResults <- tibble(

posteriorMeans=c(
mean(theta_samples$value),
importanceThetaMean,

28

oldPosteriorIntegralMean,
newPosteriorIntegralMean

),
prior = c(

"Beta(1, 1)",
"Beta(1, 5)",
"Beta(1, 1)",
"Beta(1, 5)"

),
method = c(

"Sampling",
"Sampling",
"Numerical",
"Numerical"

),
grp=c(

"Old posterior asymptotic",
"New posterior asymptotic",
"Old posterior numerical integration",
"New posterior numerical integration"

)
)

ggplot(data = data.frame(x = c(0, 1))) +
aes(x) +
stat_function(

fun = oldPosterior,
xlim = c(0, 1),
col = "red"

) +
stat_function(

fun = newPosterior,
xlim = c(0, 1),
col = "blue"

) +
geom_vline(

data = meanResults,
mapping = aes(

xintercept = posteriorMeans,
col = prior,
linetype = method

)
) +
scale_x_continuous(

name = expression(theta)
) +
scale_y_continuous(

name = expression(p(theta))
) +
scale_colour_manual(

values = c("red", "blue")
) +
labs(

29

title = "Posterior density comparison"
)

0

2

4

6

8

0.00 0.25 0.50 0.75 1.00
θ

p(
θ)

prior

Beta(1, 1)

Beta(1, 5)

method

Numerical

Sampling

Posterior density comparison

Observe that for both posterior distributions, the sample mean perfectly coincides with the theoretical
numerical mean. The distribution under the new prior is also shifted to the left, as previously postulated.

The sampling mean converges towards the theoretical mean. The rate of convergence is visualized in the
following plot.
Take the first 10 thousand iterations with step size = 10
row_seq <- seq(10, 10000, 10)

Subset the first k samples of theta under the uniform prior
thetaSubsets <- lapply(row_seq, function(k) theta_samples$value[1:k])

Calculate the posterior mean under the old and new prior
meanProgression <- tibble(

iteration = row_seq,
oldPosterior = sapply(thetaSubsets, mean),
newPosterior = sapply(thetaSubsets, posteriorMean)

)

Plot the posterior mean progressions
meanProgression %>%

ggplot(aes(x = iteration, posteriorMean)) +
geom_line(

aes(y = oldPosterior),

30

col = "red"
) +
geom_line(

aes(y = newPosterior),
col = "blue"

) +
geom_hline(

data = meanResults,
aes(

yintercept = posteriorMeans,
col = prior,
linetype = method

),
alpha = 0.8

) +
theme(legend.position = "bottom") +
guides(col=guide_legend(nrow=3, byrow = FALSE)) +
ylab("Posterior mean") +
xlab("Iteration") +
scale_y_continuous(

breaks = c(
seq(0.59, 0.64, 0.01),
round(oldPosteriorIntegralMean, digits = 3),
round(newPosteriorIntegralMean, digits = 3)

),
limits = c(NA, NA)

) +
scale_colour_manual(

values = c("red", "blue")
) +
theme(

panel.grid.minor.y = element_blank()
) + labs(

title = "Posterior mean progression"
)

31

0.590

0.600

0.610

0.620

0.630

0.623

0.596

0 2500 5000 7500 10000

Iteration

P
os

te
rio

r
m

ea
n

prior

Beta(1, 1)

Beta(1, 5)

method Numerical Sampling

Posterior mean progression

In both cases, it seems to be enough with approximately 5 thousand samples in order to calculate a relatively
accurate posterior mean for the θ parameter.

Rao, C. Radhakrishna. 1973. “Linear Statistical Inference and Its Applications.” doi:10.1002/9780470316436.

32

https://doi.org/10.1002/9780470316436

	Problem A: Stochastic simulation by the probability integral transform and bivariate techniques
	1. Sampling from the exponential distribution
	2. Probability density function
	3. Box-Muller algorithm for standard normal distribution
	4. Arbitrary normal distribution

	Problem B: The gamma distribution
	1. Rejection sampling

	(a) Acceptance probability
	(b) Rejection-sampling implementation
	2. Ratio of uniforms method

	(a)
	3. Arbitrary gamma function

	Problem C: The Dirichlet distribution: simulating using known relations
	1. Theory
	2. Implementation

	Problem D: Rejection sampling and importance sampling
	1. Rejection sampling algorithm
	2. Posterior mean by Monte-Carlo integration
	3. Required iterations for one sample
	4. New prior

