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Abstract

The theory related to a specific instance of the inverse kinematic problem in two dimensions

is investigated. A cost function penalizing large changes in joint angles is minimized under the

restriction of visiting points along a given path. An augmented Lagrangian method in combination

with BFGS is chosen for this purpose, and is shown to be successful. A barrier method developed in

order to minimize the same problem with additional angular freedom restrictions is unfortunately

not successful in the general case.

INTRODUCTION

This paper investigates the properties relating to an inverse kinematic problem. Specifically, we

consider the problem of moving a robot arm consisting of n joints connected by n segments of

different lengths. The last segment is connected to an end-effector. We are interested in minimizing

the cost of moving the end-effector through a sequence of points. This can be expressed as an

optimization problem with a set of equality constraints, and can then solved by the use of a suitable

numerical optimization method. It can be argued that the augmented Lagrangian method, using the

quasi-Newton method BFGS for solving the unconstrained sub-problems, is well suited.

Furthermore, the freedom of rotation of the joints is restricted, introducing inequality constraints

to the optimization problem.

In the following sections the theory is dealt with more closely and potential challenges are

discussed. Numerical methods are then presented and applied in an attempt to solve the problems

subject to the different constraints. The results, including convergence analysis and a numerical

investigation of the configuration space, is then presented.

THEORY

The robot arm in question consists of n segments of length li going from joint i to joint (i + 1) for

i = 1,2, ..., n− 1. The last segment goes from joint n to an end-effector. The angle between the ith

segment and the (i − 1)th segment is denoted by ϑi . The position of the first joint is chosen to be the

origin, and we consider ϑ1 to be the angle between the first segment and the x-axis.
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The joint space, the set of all possible joint configurations, is denoted by J . The joint space

is equal to Rn if we don’t impose any restrictions on the values of ϑi. This is considered to be the

case until otherwise stated. The robot arm also has an associated configuration space, denoted by

C , which consists of all the points in R2 that can be reached by some configuration of the joints.

Finding the position in the configuration space that corresponds to a position in the joint space can

be expressed as a function F : J →C . The function is

F(ϑ) =
n
∑

i=1

li
�

cos(
∑i

j=1 ϑi) sin(
∑i

j=1 ϑi)
�T

. (1)

The index of the longest segment is denoted m. The maximum reach of the end-effector is equal to

the sum of all segment lengths
∑n

i=1 li . If the longest segment is longer than the sum of the remaining

segments then there is a circular region around the origin that becomes unreachable. In such a case

the configuration space is an annulus centered at the origin, otherwise it is a disk.

The set of points satisfying these restrictions can be summarized by

C := { x ∈ R2 : lm −
n
∑

i=1,i 6=m

li ≤ ||x || ≤
n
∑

i=1

li } . (2)

The problem of interest is to find a path for the robot arm such that the end-effector visits a set

of given points p(1), . . . , p(s) ∈ C and then returns to p(1). This should be done such as to minimize

the total rotation of the joints while the arm traverses the path. One way of doing this is formulated

in [2]: Let ϑ(1), . . . ,ϑ(s) denote the joint angles when the end-effector is at the points p(1), . . . , p(s)

respectively. Minimize

E(Θ) :=
1
2

�


ϑ(2) − ϑ(1)




2
+ · · ·+



ϑ(s) − ϑ(s−1)




2
+


ϑ(1) − ϑ(s)




2�

subject to F(ϑ( j)) = p( j) for j = 1, . . . , s , (3)

where Θ := (ϑ(1), . . . ,ϑ(s)) ∈ J s. Here and throughout this paper ‖·‖ denotes the l2-norm.

Let ∆( j)i = ϑ
(k)
i − ϑ

( j)
i for i = 1, . . . , n, where ϑ(k) and ϑ( j) denote the joint configurations at two

consecutive points on the path. E(Θ) is clearly coercive. Furthermore, since any rotation of a single

angle |∆( j)i | of more than π radians results in the same new angle as a change of ∆( j)i − 2π, any

minimum Θ? has to be such that ϑ( j)i − ϑ
(k)
i ∈ [−π,π]. Thus the total rotation of each angle after

visiting all s points is at most πs at the minima. Further assuming there are a finite number of joints

and points to be visited, this restricts Θ? to a compact space. Since E(Θ) is continuous on this space

the optimization problem (3) has a solution.

The global minima are not unique if no restrictions are imposed in addition to the constraints in

(3). Observe for example that if all the angles are changed by a multiple of 2π the function value will

remain unchanged, as will the feasibility of the path. The objective function is not periodic along this

line, however, since it remains constant with a change of any (equal and arbitrarilly small) size in

all angels at once. In fact, the function is not periodic along any path since it is convex, as shown

later on. It can be concluded from the non-uniqueness of the global minima that E(Θ) is not strictly

convex.
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Even when imposing the restriction |∆( j)i | ≤ π for i = 1, . . . , n and j = 1, . . . , s and requiring that

a rotation of π radians is always done in the same direction, global minima need not be unique. This

can be shown by a simple example. Lets say we have a robot with two arms of equal length, say

l1 = l2 = 1, and the points on the path are p(1) = (2,0), p(2) = (0,0) and p(3) = (−2,0). The path

can only be obtained in the following manner: From p(1) to p(2) and from p(2) to p(3) the outer joint

is rotated π radians, and from both p(1) to p(3) and p(3) to p(1) the inner joint is rotated π radians.

The question is how to rotate the inner joint from p(1) to p(2); the rotation from p(2) to p(3) follows

from this. It is clear that |∆(1)1 | = π/2 minimizes E(Θ), giving the two possibilities ∆(1)1 = ±π/2
for obtaining a global minimum. Thus global minima are in general not unique. Since these global

minima are isolated from each other we have also shown that the problem is not convex under the

aforementioned restrictions and specific constraints.

Generally there can be infinitely many paths through all the points, and finding the optimal one

analytically is usually not possible. This encourages the use of a numerical optimization method.

Much of the rest of this section and part of the next will analyze one such method applicable to (3) in

detail.

To simplify notation and avoid being repetitive, ϑ(0) and ϑ(s+1) are used and are to be read as ϑ(s)

and ϑ(1), respectively. E(Θ) can be rewritten as follows:

E(Θ) = E(ϑ(1)1 , . . . ,ϑ(1)n , . . . ,ϑ(s)1 , . . . ,ϑ(s)n )

=
1
2

n
∑

i=1

s−1
∑

j=1

(ϑ( j+1)
i − ϑ( j)i )

2 +
1
2

n
∑

i=1

(ϑ(1)i − ϑ
(s)
i )

2 .
(4)

This rewriting helps calculating the gradient, given by

∂ E

∂ ϑ
( j)
i

= 2ϑ( j)i − (ϑ
( j+1)
i + ϑ( j−1)

i ) for i = 1, . . . , n and j = 1, . . . , s . (5)

With I being the n× n identity matrix, this results in the n× s Hessian matrix

∇2E =

























2I −I −I

−I
. . . . . .
. . .

. . .
. . . . . . −I

−I −I 2I

























. (6)

The Hessian is diagonally dominant and hermitian, implying that it is positive definite. Thus E(Θ)

is convex, as mentioned before. The minimum is obviously zero and is obtained when all joint angles

remain constant throughout the path, i.e. the arm does not move.

Now lets look at the constraints

c j(Θ) = F(ϑ( j))− p( j) =

�
∑n

k=1 lk cos
∑k

i=1 ϑ
( j)
i − p( j)x

∑n
k=1 lk sin

∑k
i=1 ϑ

( j)
i − p( j)y

�

= 0 for j = 1, . . . , s . (7)
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where p( j)x and p( j)y denote the x and y-coordinates of a point p( j). Separating each vector constraint

into its x-component c j,x(Θ) and y-component c j,y(Θ), we get 2s scalar constraints in total.

The constraint gradients∇c j,γ(Θ), where γ ∈ {x , y}, are vectors of length ns with zeros everywhere

except possibly at indices [( j − 1)n+ 1, . . . , jn]. Denoting this part of the vector∇c′j,γ(ϑ
( j)), and using

the notation

a( j)q =
n
∑

k=q

lk cos
k
∑

i=1

ϑ
( j)
i and b( j)q = −

n
∑

k=q

lk sin
k
∑

i=1

ϑ
( j)
i , (8)

gives

∇c′j,x(ϑ
( j)) =

�

b( j)1 , . . . , b( j)n

�ᵀ
, ∇c′j,y(ϑ

( j)) =
�

a( j)1 , . . . , a( j)n

�ᵀ
. (9)

This gives the Jacobian matrix of constraints

A(Θ)ᵀ =
�

∇c1,x(Θ) ∇c1,y(Θ) · · · ∇cs,x(Θ) ∇cs,y(Θ)
�

=







∇c′1(ϑ
( j))

. . .

∇c′s(ϑ
( j))






,

(10)

where ∇c′j(ϑ
( j)) =

�

∇c′j,x(ϑ
( j)) ∇c′j,y(ϑ

( j))
�

.

Due to the structure of A(Θ), where the blocks∇c′j(ϑ
( j)) have different non-zero segments, pairwise

linear independence between ∇c(Θ) j,x and ∇c(Θ) j,y for j = 1, . . . , s implies linear independence

between all the constraint gradients. If any of the constraint gradients are zero, they are not linearly

indepedent. This is the case if, for some j, ϑ( j)1 = kπ/2 for any k ∈ Z and ϑ( j)i for i = 2, . . . , n are

multiples of π, i.e. when the robot arm is situated entirely on either the x-axis or the y-axis. They

are also not linearly independent if, for some j, cosϑ( j)1 = · · · = cos
∑n

i=1 ϑ
( j)
i and sinϑ( j)1 = · · · =

sin
∑n

i=1 ϑ
( j)
i . This is the case if ϑ( j)i are multiples of π for i = 2, . . . , n, i.e. when the robot arm

is situated on any straight line. Otherwise the constraint gradients are linearly independent and

thus LICQ holds, ensuring existence and uniqueness of Lagrange multipliers. The proof of linear

independence is omitted for the sake of brevity.

The Hessian matrices of the constraint gradients are

∇2c′j,x = −













a1 a2 · · · an

a2 a2
...

. . .

an an













, ∇2c′j,y =













b1 b2 · · · bn

b2 b2
...

. . .

bn bn













. (11)

Since all a j and b j can take on any value the constraint Hessian matrices are generally not positive

semi-definite, and thus the constraints are, generally, not convex.

Next we look at adding the 2ns inequality constraints −c ≤ ϑ( j)i ≤ c for all the angles, with

0< c < π, to (3). Equivalently these constraints can be noted

d( j)i = c ± ϑ( j)i ≥ 0 for i = 1, . . . n and j = 1, . . . , s . (12)

The gradients of the inequality constraints ∇d( j)i are vectors of length ns with zeros everywhere
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except at index n j+ i. This value of this component is ±1. For any fixed i and j the two constraints d( j)i

cannot be active simultaneously. However, if for some fixed j one of d( j)i are active for all i = 1, . . . , n,

except possibly one, the constraint gradients ∇c j and ∇d( j)i are not linearly independent. In fact,

only (one of) the d( j)i where either b( j)i or a( j)i are not zero need to be active (except possibly one of

them) to prevent linear independence. And if the angles in any subset of ϑ( j)i are different only by

multiples of π, the statement from the previous sentence holds when only considering the angles

from the complementary subset. Since we have now described all the scenarios where the unit and

negative unit vectors ∇d( j)i from the active inequality constraints can be combined linearly with each

other to equal ∇c j,x or ∇c j,y , or can be combined linearly with ∇c j,x to equal ∇c j,y , LICQ holds if

none of the scenarios are true.

OPTIMIZATION METHOD

The quadratic penalty method and the augmented Lagrangian were considered for solving the

equality-constrained problem (3). The fact that LICQ holds for almost all configurations guarantees

the existence of an optimal Lagrangian multiplier λ∗ at a local minima, which is utilized by the

augmented Lagrangian method. The augmented Lagrangian method also reduces the risk of the

problem becoming ill conditioned since the penalty parameter isn’t required to grow indefinitely. This

is not the case for the quadratic penalty method. The advantage of the quadratic penalty method

comes down to it being a simpler method to understand and implement, but this does not outweigh

the benefits of the augmented Lagrangian method. The augmented Lagrangian method is therefore

chosen.

The method is implemented as outlined in Numerical Optimization by Nocedal [1, p. 515]. The

method relies on a separate method for approximating the minimizer of the augmented Lagrangian

function, LA(Θk,λk,µk), as defined by

LA(Θ,λ,µ) = E(Θ)−
∑

i∈ε
λici(Θ) +

µ

2

∑

i∈ε
c2

i (Θ) (13)

This function changes in every iteration as the parameters are updated by the method. An

appropriate method for conducting unconstrained optimization of LA(Θk,λk,µk) at each iteration

is therefore required. The BFGS method is chosen for this purpose. The BFGS method does not

require an expression for the Hessian of the objective function. One therefore avoids the challenges

of calculating and implementing the Hessian of the augmented Lagrangian function. The calculation

and implementation of the gradient of the augmented Lagrangian function is required, but can be

done with relative ease using the theory from the previous section.

Updating the Lagrangian multipliers is done by utilizing the satisfied KKT conditions to make a

good guess at the optimal λ∗. This can be expressed by the update equation λk+1
i = λk+1

i −µkci(Θ).

The optimal sequences µk and τk depend on the specific problem, and the parameters can simply be

tweaked until satisfactory performance is observed. An adaptive approach to the determination of

these sequences could have been taken, but implementation of this was considered to not be worth

the time and effort required.
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The value of ‖∇ΘLA(Θ,λ,µ)‖ being less than a given tolerance τG is chosen as the final con-

vergence criterion. This turned out to work well in practice. One could also consider the norm of

the difference between the minimizers of LA(Θk,λk,µk) and LA(Θk+1,λk+1,µk+1), but this was not

implemented since the other criterion proved to be sufficient for the problems considered. The method

behaves well with the zero-vector initial Lagrange multiplier. Generating better initial guesses was

therefore not prioritized. An attempt was made to generate good guesses for the initial configuration

of the joints. This was done using unconstrained optimization to make sure the method started off

in a feasible point. This turned out to be counter-productive due to this increasing the method’s

tendency to converge towards a solution that could easily be shown not to be optimal.

When introducing the angular constraints defined in (12) it becomes challenging to describe the

configuration space C in general. One approach is to systematically generate a large amount of

points from feasible configurations. The number of points can easily be increased or decreased to

change the resolution of C . Let us call this set of points P . Then one possibility is to check whether

a circular neighborhood of some radius r, centered at a point p( j) the robot arm should visit, contains

a specific number n of points from P . The challenge is to find a balance for r and n such that as

many points as possible in C are accepted, without accepting too many points from outside C .

Our implementation focuses mainly on accepting points in C , so that there is a considerable

possibility of accepting points that are not in C . However, it is usually clear from observation of a

plot of the configurations space and the point in question if the point belongs to C or not, at least if

the point is not relatively close to the border of the domain. Thus one can turn to plotting if there is

reason to doubt the results of the algorithm checking the neighborhood of the points. In the next

section an example that makes this clearer is considered. If a point is not considered to be in C by

this method, the program is terminated before any optimization method is initialized.

Solving the optimization problem (3) subject to both inequality constraints and equality constraints

complicates the problem and requires a new approach. The inequality constraints are of the form

l ≤ ϑ( j)i ≤ u, known as bound constraints, and methods designed for constraints of this kind, like the

bound-constrained augmented Lagrangian can be considered. Sequential quadratic programming

methods should also be considered. The barrier approach, introduced in Numerical Optimization [1,

ch. 19.1, 19.6], also emerges as an alternative. Taking the latter approach and combining it with

the augmented Lagrangian method enables us to take advantage of the knowledge and experience

obtained when solving the equality-constrained problem. There’s also the added benefit of being able

to re-use code and ideas from the equality-constrained problem .

The slack variable s of length 2ns and the penalty parameter σ is introduced and a new variable

Φ is defined as
�

Θ, s
�ᵀ

. The barrier approach involves defining the objective function as B(Φ,σ) =

E(Θ)−σ
∑m

i log si and expressing all constraints as equality constraints. The number of inequality

constraints in the original problem is denoted by m = 2ns. The equality constraints remains the same

as before and the inequality constraints are changed to equality constraints defined as d( j)i − si = 0.

The problem can now be approached as an equality-constrained problem, and the augmented
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Lagrangian method can be used. The augmented Lagrangian function becomes

LA(Φ,σ,λ,µ) = B(Φ,σ)−
q
∑

i

λci(Φ) +
µ

2

q
∑

i

ci(Φ)
2 (14)

where q = 2s(1+ n) is the total number of constraints. The problem is solved in essentially the

same way as before. The BFGS method is still used for solving the subproblem, and gradients of

objectives and constraints are calculated and implemented. The new penalty parameter σ must be

tweaked in order to obtain optimal performance. In this case the convergence test mentioned earlier,

with the norm of the difference between two subsequent configurations, is applied. This is combined

with a convergence test identical to the one used earlier. The former test was used due to the poor

practical performance of the latter one.

NUMERICAL EXPERIMENTS

In this section the numerical properties of the methods described above are investigated. First equality

constraints as in (3) are considered. The problem parameters chosen for the following numerical

analysis are

l1 = 3, l2 = 2, l3 = 2,

p(1) = (5,0), p(2) = (4, 2), p(3) = (6,0.5), p(4) = (4,−2), p(5) = (5,−1) .
(15)

The method calculates the configurations shown in figure 1. One can observe from the plots that

the equality-constraints are satisfied. This sequence of configurations gives the result E(Θ) = 0.905.

With other initial guesses Θ0, resulting in other configurations, E(Θ) has taken on higher values.

This indicates that stationary points that are not global minima exist. The initial guess resulting in

the lowest value of E(Θ) with these parameters was simply the zero-vector. The method has also

been run with other problem parameters, and has converged towards feasible solutions in every case

tested.

Since there are many feasible paths, and the global solution is not known, it is not possible to test

convergence to an analytical or approximately correct numerical reference solution. It is, however,

possible to analyze how fast the method converges towards the final solution of a specific problem

instance. The result of such an analysis, with parameters (15), is presented in figure 2. In addition

the value of the objective function and a measure of total distance to the destination points at each

iteration are plotted. The value of the objective function is increasing in this case. This can be

interpreted as the cost of coming closer to satisfying the equality constraints.

The problem

l1 = 3, l2 = 2, l3 = 2,

p(1) = (−1, 5), p(2) = (−3, 3), p(3) = (−3,−4), p(4) = (0, 5), p(5) = (3,2) .
(16)

is considered as the main example in the numerical analysis of the method for solving problems

with inequality constraints of type (12). First the configuration space is analyzed using the method

described in the last section. The result is visualized in figure 3.
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Figure 1: The configurations of the robot arm calculated by the augmented Lagrangian method in combination
with BFGS. The plots give visual confirmation the end-effector coinciding with the destination points.
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Figure 2: Analysis of the optimization method solving problem (15). The leftmost plot shows how the method
convergences towards the final numerical solution for the problem. The middle plot shows the values of the
objective function for each method iteration. The rightmost plot shows the values of the equality constraints
for each iteration.
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Figure 3: Numerical sketch of the configuration space C of the robot arm with parameters as stated in (16)
and inequality constraints (12), with c = π/2. The red points are the points on the path, in addition to the
point (0, 7.1) /∈ C .

Figure 4: The configurations of the robot arm when attempting to satisfy both equality- and inequality
constraints. Only the equality constraints is satisfied in the end. The solution is calculated using a log-barrier
method in combination with augmented Lagrange method and BFGS.
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The points p( j), for j = 1, . . . , 5, red in the figure, are all accepted as points belonging to the

configuration space C , as desired. The sixth point, p(6) = (0,7.1), is obviously not reachable since

the length of the arm is 7. Despite this fact it is accepted by the algorithm. However, as mentioned in

the theory, it is easy to conclude that the point is not reachable by inspection of the plot in figure 3. If

the point is changed to (0,7.2), it is not accepted, and the optimization algorithm terminates.

Minimizing the problem subject to inequality constraints as well as equality constraints proved to

be challenging. The method produces a solution to the problem in some cases, but fails to satisfy the

inequality constraints in almost every case. The intuitive solution to this problem is to increase the

penalty parameter σ, but this very quickly caused the method to get stuck in a section of the BFGS

method. The method also struggles with situations where elements of the slack variable s were set

to almost-zero or negative values. This produced problems during the evaluation of the augmented

Lagrangian and it’s gradient. All attempts at fixing this error resulted in the method getting stuck

during minimization of a subproblem. A plot showing a solution and it’s associated configuration

space is displayed in figure 4.

CONCLUSION

In the case for the equality-constrained problem the augmented Lagrangian method, utilizing the

quasi-Newton method BFGS to solve the subproblems, seems to generate nice results for every set of

problem parameters tested. It also generally converges in few iterations. The BFGS method used to

find minimizers of the subproblems also generally converges quickly.

The algorithm for creating points to approximate the configuration space C of the robot arm

when constraints restricting the freedom of the rotation of each joint are introduced, also runs as

desired. It is straightforward to decide whether a destination point is inside this space or not visually

from plots of C and the point, as long as the point is not relatively close to the boundary of the space.

The implementation of the log-barrier method is unsuccessful. The augmented Lagrangian method

with underlying log-barrier objective rarely produces solutions satisfying the convergence criterion.

When reducing the parameter controlling the penalty for breaking the inequality constraint enough,

the method behaves better. To get results of any interest without encountering errors, the parameter

needs to be reduced so much that the inequality constraints are essentially not taken into account at

all. This leaves us with a method that almost never satisfies the inequality constraints.

The code related to the algorithms and numerical experiments can be found at https://github.
com/JakobGM/robotarm-optimization.

To summarize, the attempt at solving (3) with equality constraints was successful. When consid-

ering the problem subject to the inequality constraints defined in (12), the method failed. This is

probably due to some kind of error in the implementation. Alternatively some function or gradient is

calculated incorrectly, or the method or problem is not understood fully by the group. More time

would have been required in order to remedy this.

https://github.com/JakobGM/robotarm-optimization
https://github.com/JakobGM/robotarm-optimization
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