
Jakob G
erhard M

artinussen
Three-dim

ensional Roof Surface G
eom

etry Inference U
sing Rem

ote Sensing D
ata

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Jakob Gerhard Martinussen

Three-dimensional Roof Surface
Geometry Inference Using Remote
Sensing Data

Master’s thesis in Applied Physics and Mathematics

Supervisor: Erlend Aune

July 2020

Abstract

In this master’s thesis, we present an end-to-end machine learning pipeline for
inferring the location, orientation, and elevation of flat roof surfaces from remote
sensing data (digital surface models and/or aerial photography). We show that by
making a minor modification to the output layer of the U-Net CNN architecture
it is able to predict rasterized surface normal vectors with great accuracy. By
clustering predicted normal vectors, using DBSCAN and k-NN, it is possible to
partition semantic roof segmentation maps into corresponding roof surface instance
segmentation maps. A single multitask CNN network which predicts both semantic
segmentation masks and rasterized normal vectors is shown to be as performant
as a pair of respective single-task networks. Finally, an optional vectorization
procedure which produces three-dimensional vector polygons from roof surface
instance segmentation maps is presented.

iii

Sammendrag

I denne masteroppgaven presenterer vi en ende-til-ende maskinlæringsprosedyre
for å identifisere beliggenheten, orientering og høyden til takoverflater ved hjelp av
fjernmålinger (digitale overflatemodeller og/eller flyfoto). Vi viser at ved å gjøre
små endringer på utputtlaget til U-Net CNN-arkitekturen evner den å predikere
rastrerte overflatenormalvektorer med stor nøyaktighet. Ved å anvende klynge-
analyse i form av DBSCAN og k-NN på de predikerte normalvektorene, så er det
mulig å partisjonere semantiske taksegmenteringer til å bli tilsvarende forekom-
stsegmenteringer hvor hver forekomst representerer en individuell takflate. Et
CNN-nettverk som predikerer både semantiske segmenteringer samt rastrerte
normalvektorer har blitt vist til å være like virkningsfull som et par med respek-
tive nettverk som utfører disse to oppgavene uavhengig av hverandre. En val-
gfri vektoriseringsprosedyre som produserer tredimensjonale vektorpolygoner fra
forekomstsegmenteringer er avslutningsvis presentert.

v

Contents

Abstract iii

Sammendrag v

1 Introduction 1
1.1 Research questions . 3

1.1.1 Problem description . 3
1.2 Thesis disposition . 6

2 Data and Pre-Processing 7
2.1 Coordinate Systems . 7
2.2 Data Types . 8

2.2.1 Vector data . 8
2.2.2 Raster data . 10

2.3 Datasets . 11
2.3.1 Raster datasets . 11
2.3.2 Vector datasets . 14

2.4 Tiling Algorithm . 15
2.5 Masking Algorithm . 19
2.6 Surface Rasterization Algorithm . 21

2.6.1 Desirable surface raster properties 21
2.6.2 The “surface normal” raster format 24
2.6.3 Handling overlapping surface polygons 31
2.6.4 Handling expensive spatial queries 33
2.6.5 Handling non-planar polygons 35

2.7 Overview . 40

3 Modeling 41
3.1 Convolutional Neural Networks (CNNs) 41

3.1.1 Convolution . 42
3.1.2 Activation functions . 44
3.1.3 Pooling . 45
3.1.4 Batch normalization . 46
3.1.5 Dropout . 47

3.2 Semantic Segmentation . 48

vii

viii Martinussen: Roof Geometry Inference using Remote Sensing Data

3.2.1 Accuracy, sensitivity, and specificity 49
3.2.2 Intersection over union and dice coefficient 50
3.2.3 Binary cross-entropy and soft losses 52
3.2.4 State-of-the-art . 53
3.2.5 The U-Net model architecture 55

3.3 Surface Normal Vector Prediction . 57
3.3.1 Related work . 57
3.3.2 CNN architecture for predicting surface normal vectors . . . 58

3.4 Optimization . 61
3.4.1 Multitask learning . 62

3.5 Raster Normalization . 63
3.5.1 RGB rasters . 63
3.5.2 LiDAR rasters . 64

4 Post-processing 69
4.1 Connected region labeling . 72
4.2 Instance Clustering . 74

4.2.1 DBSCAN . 75
4.2.2 k-nearest neighbour noise classification 76

4.3 Vectorization . 78
4.3.1 Two-dimensional polygonization 78
4.3.2 Simplification . 79
4.3.3 Three-dimensional reconstruction 81

5 Experiments 83
5.1 Experimental Setup . 83

5.1.1 Training procedure . 83
5.1.2 Software . 84
5.1.3 Hardware and performance . 84

5.2 Semantic Segmentation . 85
5.3 Features . 86

5.3.1 LiDAR data . 86
5.3.2 RGB data . 90
5.3.3 Combined data . 93

5.4 Multitask learning . 97

6 Conclusion and Further Work 111

Bibliography 113

A GIS pre-processing 121
A.1 Mapping between coordinate systems 121
A.2 Zero-buffering vector datasets . 121
A.3 Merging raster datasets . 122

Figures

1.1 Classification of geographic data quality. 2
1.2 Different granularities for single-class construction localization, us-

ing the Trondheim 2017 data set. 4

2.1 UTM zones covering Europe. 8
2.2 Types of vectorized polygons. 9
2.3 Illustration of how zero-buffering an invalid polygon corrects self-

intersecting polygons. 9
2.4 Illustration of how zero-buffering polygons removes redundant ver-

tices. 9
2.5 Visualization of the “Ortofoto Trondheim 2017” aerial photography

dataset. 11
2.6 Example of nonproper orthophoto. 12
2.7 Visualization of LiDAR data from Trondheim. 13
2.8 Illustration of vector datasets. 14
2.9 Comparison of bounding box methods. 15
2.10 Distribution of bounding box dimensions. 16
2.11 Illustration of bounding box growing. 17
2.12 The same polygon discretized to a raster grid using two different

techniques. 19
2.13 Distribution of building density across all produced tiles in Trond-

heim. 20
2.14 Three-dimensional polygonal gable roof. 21
2.15 Invertible rasterization. 22
2.16 Projection of three-dimensional polygon onto x y-plane by π2D (·). 26
2.17 The decomposition and reconstruction of a three-dimensional poly-

gon. 26
2.18 The relationship between the equation of the plane, β (P), and the

surface normal vector, n (β (P)). 27
2.19 The deconstruction of a three-dimensional polygon into two sepa-

rate rasters formats. 29
2.20 Illustration of surface raster formats Z , N , and S. 30
2.21 Illustration of overlapping surface polygons. 31
2.22 Trondheim distribution of number of intersecting surface polygons

contained by each raster tile B ∈ B. 34

ix

x Martinussen: Roof Geometry Inference using Remote Sensing Data

2.23 Statistical summary of the regression fits of the Trondheim surface
polygons. 37

2.24 The construction of LiDAR residuals from a surface elevation raster. 38
2.25 Distribution of LiDAR residuals calculated over all bounding boxes

B ∈ B for the Trondheim dataset. 38
2.26 Overview of the GIS preprocessing pipeline developed in order to

train machine learning models on geospatial data. 40

3.1 Illustration of the U-Net architecture for single-class segmentation,
a typical example of an encoder/decoder structure. 42

3.2 Visualization of a kernel convolution. 43
3.3 Example of a max-pooling operation with a receptive field of size

2× 2 and an identical stride size. 46
3.4 An example application of max-pooling dropout using a receptive

field and stride of size 2× 2. 47
3.5 Illustration of TP, TN, FP, and FN for a binary segmentation prediction. 49
3.6 Visualization of single-class IoU metric. 51
3.7 Visualization of the single-class dice coefficient metric, also known

as the F1 score. 51
3.8 U-Net model architecture. 56
3.9 Demonstration of pixel-wise cosine similarity loss. 60
3.10 Distribution density for all three color channels in the aerial pho-

tography data set covering Trondheim municipality (2017). 64
3.11 Distribution density for elevation data set covering Trondheim mu-

nicipality (2017). 65
3.12 Elevation value statistics for a tile subset of sample size n= 10 000. 65

4.1 Demonstration of unprocessed output from a surface raster machine
learning pipeline. 69

4.2 Pseudoinverse mapping, m†, mapping from the raster domain to
the vector domain. 70

4.3 Thresholding a probabilistic segmentation prediction in order to
create a binary segmentation map. 72

4.4 Segmentation of a predicted surface normal raster using a binary
segmentation map. 72

4.5 The result of skimage.measure.label applied on a binary segmen-
tation map. 73

4.6 The distribution of the cosine similarities between the ground truth
normal vectors and the predicted normal vectors of a surface normal
model over 9537 test tiles. 74

4.7 Ground truth labeling of predicted normal vectors. 74
4.8 DBSCAN labeling of predicted normal vectors. 75
4.9 Application of DBSCAN on predicted surface normal raster. 76
4.10 k-NN labeling of remaining DBSCAN noise. 76

Sammendrag xi

4.11 Application of k-NN on DBSCAN-identified noise, with k = 1 and
using the `2-norm. 77

4.12 The result of applying GDALPolygonize on the clustered instance
map bL. 78

4.13 Polygons before and after RDP has been applied with bandwidth
tolerance ε = 0.75 m. 79

4.14 Illustration of the Ramer-Douglas-Peucker algorithm. 80

5.1 Training procedure of LiDAR-only U-Net-derived architecture for
predicting surface normals over 100 training epochs. 86

5.2 Distribution of instance-averaged cosine similarities (IACS) of the
LiDAR-only surface normal model over the test split. 87

5.3 Median test prediction for LiDAR-only normal vector model. 88
5.4 Post-processing of median test prediction for LiDAR-only model

with respect to the cosine similarity loss component. 89
5.5 Training procedure for surface normal vector models using either

LiDAR or RGB as input. 90
5.6 Distribution of instance-averaged cosine similarities of the RGB-only

surface normal model over the test split. 91
5.7 Median test prediction for RGB-only normal vector model. 91
5.8 Post-processing of median test prediction for RGB-only model with

respect to the cosine similarity loss component. 92
5.9 Training procedure for surface normal vector models using LiDAR

and/or RGB as input. 93
5.10 Distribution of instance-averaged cosine similarities of the combined

input surface normal model over the test split. 94
5.11 Median test prediction for the combined input normal vector model. 95
5.12 Post-processing of median test prediction for combined-input model

with respect to the cosine similarity loss component. 96
5.13 End-of-epoch multitask loss decomposition for different values of α

over 20 training epochs. 98
5.14 Best loss component value across all 20 training epochs for each

value of α. 99
5.15 Training procedure of combined input, U-Net-derived multitask

architecture (α = 10−5) for predicting semantic segmentation masks
and surface normals over 100 training epochs. 100

5.16 End-of-epoch loss components of multitask network compared to
respective single-task losses. 101

5.17 Distribution of instance-averaged cosine similarities of the surface
normal vector rasters produced by the multitask network over the
test split. 102

5.18 Distribution of IoU evaluations of the combined-input models (single-
task and multitask) over tiles from the test set. 103

xii Martinussen: Roof Geometry Inference using Remote Sensing Data

5.19 Scatter plot showing the correlation between the IoU evaluation
metric performance of two surface segmentation models, single-task
vs. multitask. 104

5.20 Median test prediction for multitask model with respect to the cosine
similarity loss component. 105

5.21 Post-processing of median test prediction for multitask model with
respect to the cosine similarity loss component. 106

5.22 95th percentile test prediction (bad prediction outlier) for multitask
model with respect to the cosine similarity loss component. 107

5.23 Post-processing of 95th percentile test prediction (bad prediction
outlier) for multitask model with respect to the cosine similarity
loss component. 108

5.24 5th percentile test prediction (good prediction outlier) for multitask
model with respect to the cosine similarity loss component. 109

5.25 Post-processing of 5th percentile test prediction (good prediction
outlier) for multitask model with respect to the cosine similarity
loss component. 110

Tables

3.1 Aggregate statistics for each image channel distribution for the aerial
photography data set covering Trondheim municipality (2017). . . 64

3.2 Aggregate statistics for elevation data set covering municipality of
Trondheim (2017). 65

xiii

Code Listings

3.1 Keras layer producing raster values of absolute magnitude less than
or equal to 1. 59

3.2 A Keras modeling layer implementing `2-normalization. 59
3.3 Cosine similarity loss function implemented in Tensorflow v2.1. . . 61

A.1 Coordinate system transformation using gdaltransform. 121
A.2 Zero-buffering vector dataset using ogr2ogr. 121
A.3 Virtual merger of raster tiles using gdalbuildvrt. 122
A.4 Merging overlapping raster datasets using gdalbuildvrt. 122
A.5 Setting color interpretation of multi-channel VRT rasters. 123
A.6 Specifying source bands for multi-channel VRT rasters. 123

xv

Chapter 1

Introduction

Remote sensing is the process of gathering information about an object without
making physical contact, one such technology being aerial photography. Although
aerial RGB photography is intuitively interpretable for humans, it is fundamentally
two-dimensional. LiDAR, another remote sensing technology, is able to measure
distances to object surfaces by directing a beam of light and measuring the time of
arrival and wavelength of the ensuing reflection. The resulting data can therefore be
used to construct a three-dimensional spatial representation of the object of interest.
LiDAR has been applied in a wide array of fields such as meteorology [1], forestry
analysis [2], urban flood modeling [3], and autonomous driving systems [4].

One of the applications of LiDAR technology is the construction of digital
surface models (DSMs). DSMs are grayscale images representing the earth’s surface
including all above-surface objects such as natural canopy and human-made objects.
In contrast, digital terrain models (DTMs) represent the elevation of the bare ground
where all above-surface objects have been artificially removed. While DTMs are
often used in geographic and cartographic applications, DSMs can be used for
localization and classification of objects above ground.

LiDAR data and aerial photography is usually provided by the respective cadas-
tral authority in a given country. Cadastral authorities are also responsible for
keeping records of cadastral data such as cadastral plots, roads, and buildings.
The exact type and quality of this data varies substantially between countries and
sometimes even between administrative regions in the same country. This raises
the question: “Can high-fidelity insights be inferred from otherwise low-fidelity
geographic data?”. Figure 1.1 shows an outline of the possible “data enhancements”
which are of interest within this domain.

The Norwegian Mapping and Cadastre Authority (Statens Kartverk) provides
geographic data of uniquely high quality for the entirety of Norway. This offers an
opportunity to train supervised machine learning models on lower fidelity data in
order to infer higher fidelity features. Such models can then be applied in other
regions where only low-fidelity data is available as a method of data enhancement.

The goal of my specialization project [5] from 2019 was to infer two-
dimensional building outlines from aerial photography and LiDAR elevation mea-

1

2 Martinussen: Roof Geometry Inference using Remote Sensing Data

High-fidelity	data

+ Roof surfaces (3D polygons)

+ Orthophotography

Medium-fidelity	data

+ Building outlines (2D polygons)

+ Edge features (2D line segments)

Low-fidelity	data

Raw elevation data (DSM)

Aerial photography (RGB)

Cadastral plots (2D polygons)

Inference Inference

Figure 1.1: Classification of geographic data quality. The classifications reflect a
general observed trend in data sets, and a given region may therefore not fit into
exactly one of these categories. Some of the data types mentioned here will be
described in Chapter 2.

surements. A building outline is a two-dimensional representation of building
“footprint”. Such data can be used for map annotations, flood risk analysis, and
population density estimates, amongst other applications. The identification of
building outlines from remote sensing data is considered to be medium-fidelity
target inference by using low-fidelity features, and can be formulated as a so-called
semantic segmentation task1.

This master’s thesis concerns itself with the reconstruction of three-dimensional
roof surface polygons from remote sensing data. Roof surface polygons are com-
pletely flat geometries, which when combined form the spatial shape of entire roof
structures. The detection of roof surface polygons is formulated as an instance seg-
mentation problem, a task which produces high-fidelity targets. Three-dimensional
representations of roof structures can for example be used for urban planning pur-
poses. Another application, which incidentally prompted my interest in this topic,
is the use of roof surface geometries to estimate the potential energy production
of roof-mounted solar panel installations.

The topic of this master’s thesis is a natural extension of much of the work
already presented in my specialization project. A sequential four-step method has
been developed in order to detect roof surface polygons,

1. Determine which pixels that contain roof structures (semantic segmentation).
2. Assign a specific roof surface to each “roof pixel” (instance segmentation).
3. Fit a 2D polygon for each roof surface instance (polygon segmentation).
4. Reconstruct the 3D orientation and elevation of each roof surface polygon

(surface segmentation).

The first step is essentially a minor reformulation of the task already solved in my
specialization project. For this reason, much of the theory, general methods, and
specific source code from my specialization project has been incorporated into this
work.

1The concepts “semantic segmentation” and “instance segmentation” will be formally defined in
Section 1.1.1.

Chapter 1: Introduction 3

1.1 Research questions

Geographic data, such as building outlines and roof surfaces, are formatted in an
unsuitable way for direct machine learning, and must therefore be purposefully
transformed and pre-processed. The development of a data pipeline for geographic
data is the first topic of research in this thesis.

RQ1 How can geographic data representations be transformed into suitable for-
mats for machine learning?

After having developed such a pipeline, the focus will be to develop an instance
segmentation model for identifying roof surfaces with raster data from this pipeline.
The use of aerial photography and LiDAR data from the Norwegian municipality
of Trondheim will be investigated, as well as the combination of these two data
sources.

RQ2 How can aerial photography and/or LiDAR data be used in order to infer
accurate roof surface instance segmentation maps?

The resulting instance segmentation map, which represents rasterized roof surfaces
in two dimensions, should be vectorized. That is, the machine learning model’s
raster predictions should be converted to three-dimensional vector polygons, a
data format which is more usable for the most common applications of roof surface
geometries.

RQ3 How can three-dimensional roof surface polygons be produced from predicted
instance segmentation raster maps.

Answering this last research question will require the development of additional
post-processing methods.

We will now formalize the problem domains which these research questions be-
long to, namely semantic segmentation, instance segmentation, polygon segmentation,
and surface segmentation.

1.1.1 Problem description

For any given image we can pose three relevant image recognition questions [6]:

1. Identification: Does the image contain any object of interest?
2. Localization: Where in the image are the objects situated?
3. Classification: To which categories do the objects belong to?

We will concern ourselves with only one object category (class) at any time, that
class being roof surfaces, and will simplify the upcoming theory accordingly with
this simplification in mind. The localization and classification of objects in a given
image can be performed at different granularity levels, as shown by the columns
in Figure 1.2. The rows of Figure 1.2 show how the specific definition of what
exactly constitutes an object influences the problem to be solved, where the top

4 Martinussen: Roof Geometry Inference using Remote Sensing Data

Bounding Box Regression Semantic Segmentation Instance Segmentation

Figure 1.2: Different granularities for single-class construction localization, using
the Trondheim 2017 data set. Bounding box regression is shown on the left,
semantic segmentation in the middle, and instance segmentation on the right. The
top row defines entire buildings as the objects of interest, while the bottom row
considers each individual roof surface as distinct objects.

row considers entire building to be single objects, while the bottom row considers
each individual roof surface to be distinct objects. It is the latter definition which
is of interest in this work.

Bounding box regression concerns itself with finding the smallest possible rect-
angles which envelopes the objects of interest. The sides of the rectangles may
either by oriented parallel to the axis directions, or rotated in order to attain the
smallest possible envelope. The bounding box will therefore necessarily contain
pixels that are not part of the object itself whenever the object shape is not perfectly
rectangular.

Semantic segmentation rectifies this issue by classifying each pixel in the image
independently, i.e. pixel-wise classification, producing a so-called classification mask.
Instance segmentation distinguishes between pixels belonging to different objects of
the same class, while semantic segmentation does not make this distinction. Since
a bounding box can be directly derived from a semantic segmentation mask, and a
semantic segmentation mask can be directly derived from instance segmentation
mask; the problem complexity of these tasks are as follows:

Bounding box regression< Semantic segmentation< Instance segmentation.

An image of width W and height H consisting of C channels is represented by a

Chapter 1: Introduction 5

W ×H × C tensor, X ∈ RW×H×C . This is somewhat simplified, but we will give a
more nuanced description in Section 2.2.2. Single-class semantic segmentation
can therefore be formalized as constructing a binary predictor f̃ of the form:

f̃ : RW×H×C → BW×H , B := {0, 1}.
Where BW×H denotes a boolean matrix, 1 indicating that the pixel is part of the
object class of interest, and 0 indicates the opposite. In practice, however, statistical
models will often predict a pixel-wise class confidence in the continuous domain
[0,1],

f̂ : RW×H×C → [0, 1]W×H ,

but a binary predictor can be easily constructed by choosing a suitable threshold,
T , for which to distinguish positive predictions from negative ones

f̃ (X) = f̂ (X)> T, X ∈ RW×H×C .

The choice of the threshold value T will affect the resulting sensitivity and specificity
metrics of the model predictions, metrics which will be explained in Section 3.2.

When performing single-class instance segmentation, a binary prediction mask
is not sufficiently expressive. Assuming that no more than m individual instances
can be simultaneously represented by any given input tensor X, the task is to assign
an instance label l ∈ {0,1,2, . . . , m} to every single pixel in the input tensor. The
assignment of l = 0 means that no object overlaps the given pixel. An instance
predictor f̂

bL is therefore a function producing a label array bL of the form

f̂
bL : RW×H×C → {0, 1,2, . . . , m}W×H×C .

Instead of representing each predicted instance as a set of raster pixels which
share the same label value l in bL, they can be represented as two-dimensional
vectorized polygons which enclose each given instance instead (polygon segmenta-
tion). The specific data format used in order to represent vectorized polygons is
presented in Section 2.2.1. For the case of three-dimensional objects, the instance
polygons can be constructed to be three-dimensional as well, sometimes referred
to as surface segmentation [7, 8]. Since the three-dimensional polygons in a surface
segmentation can be projected into a two-dimensional plane in order to produce a
polygon segmentation map, and since two-dimensional polygons can be rasterized
in order to create an instance segmentation map, the problem complexity of these
tasks are as follows:

Instance segmentation< Polygon segmentation< Surface segmentation.

This thesis presents a machine learning pipeline which produces vectorized
surface polygon segmentations from remote sensing data. The pipeline does this
by first predicting a semantic segmentation map, which is then partitioned into an
instance segmentation map. This instance segmentation map is then vectorized
in order to produce a polygon segmentation map. Finally, the three dimensional
elevation and orientation of each polygon is inferred from the original LiDAR data
in order to produce a surface segmentation map.

6 Martinussen: Roof Geometry Inference using Remote Sensing Data

1.2 Thesis disposition

We will start by providing an introduction to the world of Geographic Information
Systems (GIS); the field which concerns itself with representing geographic data, in
Chapter 2. We will also describe how to pre-process such geographic data in order to
produce rasters which are suitable for training accurate machine learning models.
An overview of the problem domain of image segmentation and the methods
currently being applied in the field will be provided in Chapter 3, a chapter which
will also describe the specific model architectures which consume and produce
the data formats described in the previous chapter. The post-processing required
in order to produce vectorized surface polygons from predicted rasters will be
described in Chapter 4. Finally, the training procedure and experimental results
will be presented and discussed in Chapter 5.

Chapter 2

Data and Pre-Processing

Geographic data is in wide use by both the public and private sector, and is a huge
subject in and of itself. The storage, processing, and inspection of such data is
handled by Geographic Information Systems (GIS). In this section we will explain a
few core GIS concepts relevant for the problem at hand, concepts which will inform
decisions for how to prepare the data for machine learning purposes. Section 2.1
will give a brief introduction to the coordinate systems used to represent geographic
data. GIS data can be largely bisected into two categories, vector data and raster
data, and both types will be described in Section 2.2. Section 2.3 will present the
datasets used for training our models. The remaining subsections will describe
the pre-processing pipeline which has been developed for our specific purposes,
preprocessing in the form of cadastral tiling (Section 2.4), segmentation masking
(Section 2.5), and surface rasterization (Section 2.6). A figurative overview of the
preprocessing pipeline is provided by Figure 2.26 in Section 2.7.

2.1 Coordinate Systems

One of the most common coordinate systems for representing arbitrary positions
on earth’s surface is the World Geodetic System (WGS), the latest revision being
WGS 84 [9]. A given point, p = (φ,λ, z), is represented by an angular latitude
and longitude, φ and λ respectively, and a radial distance from the mean sea level,
z. A negative value for z does not necessarily imply that the given point is below
ground, as certain areas (such as in the Netherlands) are situated below sea level.
It is therefore not sufficient to represent elevation data with unsigned floating
point numbers.

Although WGS is able to uniquely represent arbitrary geographic points with a
high degree of accuracy, it is still unsuitable for many applications. Cartesian trans-
formations and distance norms are cumbersome to calculate, and data structures
and visualizations which are fundamentally two dimensional in nature, such as
maps, rasters, and matrices, are difficult to construct from spherical coordinates
while preserving important properties of the data.

7

8 Martinussen: Roof Geometry Inference using Remote Sensing Data

Figure 2.1: The figure shows the
UTM zones required in order to
cover the entirety of Europe, from
29S to 38W. This public domain im-
age has been sourced from Wiki-
media [10].

In order to solve this problem we define a
set of coordinate system projections which ap-
proximate predefined regions of the earth’s sur-
face as flat planes. The resulting coordinate sys-
tems are Cartesian and thus allow us to rep-
resent geographic points in the more common
p = (x , y, z) format. Cartesian distance norms
such as ||p1 − p2||2 and Cartesian translations
p1 + p2 stay within predefined error tolerances
as long as operations are contained to the validity
region of the given projections.

One such Cartesian approximation of the
earth’s surface is the Universal Transverse Merca-
tor (UTM) coordinate system which divides the
earth into 60 rectangular zones [11, p. 48]. The
UTM zones covering Europe are shown in Fig-
ure 2.1. We will exclusively use UTM zone 32V
for our datasets covering the municipality of Trondheim situated in the southern
part of Norway. Data provided in alternative coordinate systems will be mapped to
this UTM zone before we start using the data. Since this is an affine coordinate sys-
tem, we can easily generalize any models to other coordinate systems by applying
the correct affine transformations. Practical instructions for how to map between
different coordinate systems are given in Appendix A.1.

2.2 Data Types

We will provide a brief overview of the two main categories of GIS data, namely
vector data and raster data, and how to prepare these data types for machine
learning purposes.

2.2.1 Vector data

A line string is an ordered collection of geographic points (p0, . . . , pn) defining
a path which connects each consecutive point by a straight line. The points are
therefore necessarily order dependent. A simple line string is a path which does
not intersect itself, while a complex line string is one that does. When the first
and last points of a line string are identical it is considered a linear ring, i.e.
l = (p0, . . . , pn, p0). A polygon can therefore be represented by a simple linear
ring which defines its exterior hull and any number of simple linear strings which
defines its interior hulls. Figure 2.2 illustrates these concepts for polygons with
and without interior hulls.

Chapter 2: Data and Pre-Processing 9

p0

p1

p2

p3

p0,0 p0,1

p0,2p0,3

p1,0 p1,4

p1,3
p1,2p1,1

Figure 2.2: Simple polygon with four unique vertices is shown on the left hand
side. A complex polygon with an outer hull and an interior hull is shown on the
right hand side for comparison.

A polygon is considered invalid if one or more of its linear rings are self-
intersecting, i.e. if any of its rings is considered to be complex. Data providers
frequently provide polygons in invalid states and such polygons must be corrected
since they are often not processable by common GIS tools. Zero-buffering invalid
polygons (growing the polygon in all directions by zero units) fixes such problems,
as can be seen in Figure 2.3.

p0

p1

p2

p3

buffer(0.0)

p0

p1

p2

p3

p4

p5

Figure 2.3: Illustration of how zero-buffering an invalid polygon corrects self-
intersecting polygons.

Zero-buffering polygons has the added benefit of normalizing vector data
by re-ordering the polygon vertices in an anti-clockwise manner and removing
redundant vertices as shown in Figure 2.4.

p0 p1 p2

p3p4

p5

p6p7

buffer(0.0)

p0 p1

p2p3

.

Figure 2.4: Illustration of how zero-buffering polygons removes redundant ver-
tices.

This allows you to apply simpler similarity measures for comparing polygons,
and reduces computational costs when processing the polygons. Technical de-

10 Martinussen: Roof Geometry Inference using Remote Sensing Data

tails for applying zero-buffers to vector data is provided in Appendix A.2. We
will come back to how to combine vector and raster datasets by rasterization in
Section 2.5 where it will also become clear why the removal of redundant vertices
is of importance.

2.2.2 Raster data

Raster data consists of a set of scalar measurements imposed onto a grid. A color
image, I , of width W and height H, will contain three color channels; red, green,
and blue (RGB), and can be represented by a three-dimensional array of size
H×W×3. Each color channel for a given pixel is represented by an unsigned 8-bit
integer, i.e.

Ii, j,c ∈ {0, 1, . . . , 255}, i = 1, . . . ,H, j = 1, . . . ,W, c = r, g, b.

A LiDAR elevation map, which we will denote as E, is likewise encoded as a single-
channel grayscale image of size W×H. Each pixel is represented by a signed 32-bit
floating point value which gives the following approximate value domain

Ei, j ∈ R, i = 0, . . . , H− 1, j = 0, . . . ,W− 1.

These two raster types must be handled differently during data-standardization
and -normalization due to their different value domains, which we will come back
to in Section 3.5. Whenever we refer to remote sensing raster data in general, be it
LiDAR and/or RGB, we will denote the input raster as X .

For GIS rasters specifically we must additionally provide the spatial extent of
the given raster defined by:

• A coordinate system, for example UTM 32V.
• The coordinate of the center of the upper left pixel, X1,1; the origin r 0 =
[x0, y0]

T .
• The pixel step size, ∆= [∆x ,∆y]

T , for example [0.25 m,−0.25m]T .

The pixel value X i, j,c therefore represents a rectangle of width ∆x and height
∆y centered at the spatial coordinate r 0 + [∆y i,∆x j] interpreted in the given
coordinate system.

Missing data in remote sensing rasters is specified by filling in a predefined
nodata placeholder value. For RGB data this is often set to 0, resulting in a black
pixel. LiDAR rasters often use nodata = −2127×(2−2−23)≈ −3.4028234664×1038,
the most negative normal number representable by a single-precision floating
point number. Such nodata values may arise from measurement errors or by pixels
situated outside the given coverage area of the dataset, and must be special-cased
during data normalization, which we will come back to in Section 3.5.

When we will train models on the combination of LiDAR and aerial photography
data, these two types of rasters must be merged in order to attain a consistent three-
dimensional array of size H ×W × 4. These rasters can not be simply superposed
when their pixel sizes∆ and/or origins r 0 differ. In such cases we will apply bilinear

Chapter 2: Data and Pre-Processing 11

interpolation on the raster of greatest resolution and subsequently downsample it
in order to align all pixels. See Appendix A.3 for how this is performed in practice.

2.3 Datasets

The modeling results presented in Chapter 5 are trained on GIS data covering
the Norwegian municipality of Trondheim. All datasets, except from the three-
dimensional roof polygon dataset kindly provided by Norkart, have been made
available by the “Norge digitalt”-partnership and have been downloaded from
https://geonorge.no, an online service hosted by Norwegian Mapping and Cadas-
tre Authority (Statens Kartverk). All data, unless otherwise stated, are licenced
under the “Norge digitalt”-licence1 which restricts the use to non-commercial
purposes.

2.3.1 Raster datasets

We will use the “Ortofoto Trondheim 2017”2 aerial photography dataset from
2017 which requires 161 GB of storage space. The real image resolution is 0.04 m –
0.15 m, but is provided with an resampled resolution of 0.1 m for consistency,
that is, each pixel is of size 0.1 m× 0.1 m. The reported accuracy is ±0.35 m [12],
although the exact type of this accuracy is not specified. An exemplified region is
visualized in Figure 2.5.

Figure 2.5: Visualization of the “Ortofoto Trondheim 2017” aerial photography
dataset. © Kartverket.

An orthophoto is an image where the geographic scale is uniform over the
entire image. Proper orthophotos are expensive to manufacture and are therefore
seldomly available for most geographic regions [13], including Trondheim. Aerial

1Information regarding the “Norge digitalt”-licence can be found here: https://www.geonorge.
no/Geodataarbeid/Norge-digitalt/Avtaler-og-maler/Norge-digitalt-lisens/.

2Product specification for “Ortofoto Trondheim 2017” can be found here:
https://kartkatalog.geonorge.no/metadata/cd105955-6507-416f-86d2-6d95c1b74278.

https://geonorge.no
https://www.geonorge.no/Geodataarbeid/Norge-digitalt/Avtaler-og-maler/Norge-digitalt-lisens/
https://www.geonorge.no/Geodataarbeid/Norge-digitalt/Avtaler-og-maler/Norge-digitalt-lisens/
https://kartkatalog.geonorge.no/metadata/cd105955-6507-416f-86d2-6d95c1b74278

12 Martinussen: Roof Geometry Inference using Remote Sensing Data

photography which has not been properly “ortho-rectified” may impede location-
based inference as there exists no exact one-to-one mapping between image pixels
and geographic coordinates. This problem is best understood by an example, as
shown in Figure 2.6.

Figure 2.6: Example of nonproper orthophoto. The building centered in the
image is 14 stories tall. The orange area annotates a clearly visible building wall.
© Kartverket.

As can be seen in Figure 2.6, the “Ortofoto Trondheim 2017” dataset clearly
shows one side of a building due to the perspective of the plane capturing the
image. An ideal orthophoto would capture all vertical building walls as single,
straight lines, no matter the perspective. The effect of this “parallax error” on
semantic segmentation predictions has been investigated in our previous work [5],
the conclusion being that it does not impede predictive accuracy to a major degree.

The LiDAR dataset used is “Høydedata Trondheim 5pkt 2017”3 from and
requires 25 GB of storage space. The pixel size is 0.25 m× 0.25 m and the LiDAR
measurements have a reported standard deviation of 0.02 m [14]. LiDAR visualized
as a grayscale image over the same region as in Figure 2.5 is presented in Figure 2.7.

3Product specification for “Høydedata Trondheim 5pkt 2017” can be found here:
https://kartkatalog.geonorge.no/metadata/bec4616f-9a62-4ecc-95b0-c0a4c29401dc.

https://kartkatalog.geonorge.no/metadata/bec4616f-9a62-4ecc-95b0-c0a4c29401dc

Chapter 2: Data and Pre-Processing 13

Figure 2.7: Visualization of the “Høydedata Trondheim 5pkt 2017” LiDAR dataset.
© Kartverket.

14 Martinussen: Roof Geometry Inference using Remote Sensing Data

2.3.2 Vector datasets

The “Matrikkelen - Eiendomskart Teig”4 dataset contains all cadastral plots in
Trondheim, the use of which will be explained in Section 2.4. The “FKB-bygning”5

dataset contains all registered building outlines in Trondheim. The building out-
lines will be used to construct binary classification masks as outlined in Section 2.5.
Additionally, the “FKB-bygning” dataset includes a complete collection of descrip-
tive building lines, such as ridge lines, verge lines, and so on. This dataset is of no
direct use to us, but Norkart has constructed an algorithm for merging these lines
in order to construct three-dimensional roof surface polygons. This polygonized
dataset has been kindly provided to us by Norkart, and will be used as outlined in
Section 2.6. These four datasets are illustrated in Figure 2.8.

Figure 2.8: Illustration of vector datasets. Cadastral plots are shown on the
top left while building outlines are shown on the top right. Descriptive building
lines are shown on the bottom left, such as ridge lines shown in red, while the
polygonized roof surfaces produced by Norkart are shown on the bottom right.
© Kartverket.

4Product specification for “Matrikkelen - Eiendomskart Teig” can be found here:
https://kartkatalog.geonorge.no/metadata/74340c24-1c8a-4454-b813-bfe498e80f16.

5Product specification for “FKB-bygning” can be found here:
https://kartkatalog.geonorge.no/metadata/8b4304ea-4fb0-479c-a24d-fa225e2c6e97.

https://kartkatalog.geonorge.no/metadata/74340c24-1c8a-4454-b813-bfe498e80f16
https://kartkatalog.geonorge.no/metadata/8b4304ea-4fb0-479c-a24d-fa225e2c6e97

Chapter 2: Data and Pre-Processing 15

2.4 Tiling Algorithm

The data sets provided to us are in a state unsuitable for direct use by machine
learning frameworks. For this reason we need to develop a preprocessing pipeline
that transforms the data into a more customary format. The data preprocessing
should be generalizable to different regions, data formats, data types (vector
vs. raster), coordinate systems, and so on. The goal is to implement a modeling
pipeline that can be applied to other geographic regions in the future.

Our data sets are defined over a single, contiguous geographic area, and we
must therefore define a sample space which allows us to split the data into training-,
validation-, and test-sets. The collection of all cadastral plots in a given region is a
suitable sample space since cadastral plots are non-overlapping regions of relatively
small size and have a high probability of containing one or more buildings. A large
raster dataset covering a sparsely populated region can therefore be substantially
reduced in size before training. An alternative approach is to split the entire data
set into regularly sized tiles and use this tile collection as the sample space. A tiled
sample space, for anything other than densely populated areas, will suffer from
class imbalances due to low building densities in most tiles.

Given a specific geographic region, defined by the extent of the cadastral
plot, we must retrieve the raster which covers the region of interest. The simplest
approach is to calculate the axis-aligned bounding box of the plot, the minimum-
area enclosing rectangle of the given plot. A bounding box is uniquely defined
by its centroid c = [1/2(xmin + xmax), 1/2(ymin + ymax)], width w = xmax − xmin,
and height h= ymax − ymin, and we will denote it by B(c, w, h). This is shown in
Figure 2.9a.

(xmin, ymax)

(xmax, ymin)

w= xmax − xmin h
=

y
m

ax −
y

m
in

CADASTRAL

(a) Bounding box calculation for a given cadas-
tral. The cadastral is shown in orange, and the
resulting bounding box is annotated with blue
dashed lines.

φ

(xmin, ymax)

(xmax, ymin)

(b) Figure showing the difference between
a regular bounding box shown in blue, and
a minimum rotated rectangle shown in red.
Angle of rectangle rotation denoted by φ.

Figure 2.9: Comparison of bounding box methods.

The edges of the bounding box is by definition oriented parallel to the coordi-
nate axes. An alternative method is to calculate the arbitrarily oriented minimum

16 Martinussen: Roof Geometry Inference using Remote Sensing Data

bounding box (AOMBB), a rectangle rotated by φ degrees w.r.t. the x-axis, as
shown in Figure 2.9b.

While AOMBB yields regions with less superfluous raster data, it requires
warping of the original raw raster whenever φ is not a multiple of 90°, i.e. φ 6∈
{0°, 90°, 180°, 270°}. Such warping requires data interpolation of the original raster
data due to the rotation of the coordinate system, and may introduce artifacts to the
warped raster without careful parameter tuning. AOMBB is therefore not a viable
approach during the preprocessing stage, and we will therefore use axis-aligned
minimum bounding boxes instead, from now on simply referred to as bounding
boxes.

Calculating bounding boxes for the cadastral plots in our data sets will yield
rectangles of variable dimensions. Variable input sizes will cause issues for model
architectures which require predefined input dimensions. Convolutional neural
networks do handle variable input sizes, but dimensions off all images in a single
training batch must be of the same size. It is therefore preferable to normalize the
size of each bounding box.

The distributions of the bounding box widths (w), heights (h), and maximal
dimensions (m=max{w, h}) are shown in Figure 2.10.

0 20 40 60 80

Width w [m]

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

F
ra
ct
io
n
o
f
b
o
u
n
d
in
g
b
ox
es

87.9%

0 20 40 60 80

Height h [m]

87.9%

0 20 40 60 80

Max m [m]

85.1%

Figure 2.10: Distribution of bounding box widths w (left), heights h (middle), and
largest dimension m=max{w, h} (right). The cut-off value of 64m is shown by
red dotted vertical lines. The fraction of bounding boxes with dimension ≤ 64 m
is annotated as well. The x-axis has been cut off at the 90th percentile. Dataset:
Trondheim cadastre.

As can be seen in Figure 2.10, the distributions of h and w are quite similar,
as expected. A square 1 : 1 aspect ratio is therefore suitable for the normalized
bounding box size. Specifically, a 64 m× 64m bounding box will be of sufficient
size to contain ≈ 85 % of all cadastre plots in a single tile. With a LiDAR resolution
of 0.25m, this results in a final image resolution of 256px×256 px. This resolution
has the added benefit of being a common resolution for CNNs.

How should the bounding boxes be normalized to to 256 px× 256 px? A com-
mon technique is to resize the original image by use of methods such as bilinear
interpolation or Lanczos resampling. While this is tolerable for normal photographs,

Chapter 2: Data and Pre-Processing 17

where each pixel has a variable surface area mapping, it is an especially lossy trans-
formation for remote sensing data. In the Trondheim 2017 LiDAR data set, for
instance, each pixel represents a 0.25 m× 0.25m real world area. If the highly
variable extent of each bounding box is scaled to 256 px× 256 px, the real world
area of each pixel will differ greatly between cadastral plots. Resized images will
also become distorted whenever the original aspect ratio is not 1 : 1.

A better method utilizes the fact that the remote sensing data covers a con-
tinuous geographic region, which allows us to expand the feature space beyond
the original region of interest. The original bounding box is denoted as B(c, w, h).
Now, define the following “enlarged” width and height:

h∗ :=
¡

h
64m

¤

· 64m, w∗ :=
l w

64 m

m

· 64m

The new bounding box, B(c, w∗, h∗), covers the original bounding box and is
divisible by 256 px in both dimensions. In other words, the original bounding box
is grown in all directions until both the width and height are multiples of 64 m
(256 px). This is demonstrated in Figure 2.11.

64 m
256px

64 m
256px

h∗

w∗

Figure 2.11: Bounding box of width 2.25 ·64m = 144m and height 1.25 ·64m =
80 m. The bounding box is grown until it is 3 tiles wide and 2 tiles tall, i.e.
192 m× 128 m.

The resulting bounding box can now be divided into w∗h∗/642 tiled images
of resolution 256 px× 256 px, every pixel representing a 0.25m× 0.25m surface
area, and no spatial information has been lost in the process. Each tile’s geographic
extent is uniquely defined by the coordinate of the upper left corner (tile origin),
since the tile dimensions are identical. An affine transformation from the UTM
zone into the tile’s discretized coordinate system can be constructed from the tile
origin.

18 Martinussen: Roof Geometry Inference using Remote Sensing Data

The additional area, B(c, w, h) \ B(c, w∗, h∗)6, is filled with real raster data and
respective target masks, and therefore may cause expanded bounding boxes to
partially overlap. This will result in certain cadastral plots to share features, and
must therefore be carefully dealt with in order to prevent data leakage across
training, validation, and test splits. Another approach is to fill in the additional
area with zero-values, effectively preventing all data leakage between cadastral
plots. A disadvantage with this approach is that all models are now required to
learn to ignore this additional, fake data, and this could result in reduced predictive
performance and/or longer training times.

6Given geographic regions A and B, the region A\ B is defined as the region covered by A but not
by B.

Chapter 2: Data and Pre-Processing 19

2.5 Masking Algorithm

In order to create a ground truth segmentation mask we must convert the vector-
formatted mask polygons, building outlines in our case, into the same rasterized
format as the remote sensing data. The construction of discretized segmentation
masks from vectorized mask polygons is performed by Algorithm 1.

Algorithm 1: Discretized masking

1 Transform the mask polygons into the pixel coordinate system of the
raster tile, using the affine transformation defined by the tile origin.

2 Superimpose the polygon on the discretized pixel grid and crop poly-
gons outside the pixel region (0, 255)× (0, 255).

3 Fill in the value 1 for any pixel contained by the polygon exterior hulls,
while not contained by any interior hull.

4 Set remaining values to 0.

A problem arises when pixels are partially contained by a polygon exterior and
interior, i.e. when the pixel overlaps the polygon’s boundary. The pixel must be
rather arbitrarily considered as either contained (decision rule A) or not contained
(decision rule B) by the polygon. Both decision rules are shown in Figure 2.12.

Figure 2.12: The same polygon discretized to a raster grid using two different
techniques. In the left figure, all pixels being touched by the interior of the polygon
are considered a part of the polygon (decision rule A), while in the left figure,
only pixels entirely contained within the interior are considered being part of the
polygon (decision rule B).

20 Martinussen: Roof Geometry Inference using Remote Sensing Data

An alternative is to average the two masks, resulting in mask values of 0.5
where the two decision rules disagree. Approximately 9.2 % of mask pixels of value
1 are situated along the boundary of a discretized mask polygon (1.7 % of all pixels
regardless of value) and may therefore be affected by this decision. We have opted
for decision rule B, as it has been observed to preserve symmetries and seams to
a larger degree than decision rule A. The distribution of the mask class balance
across all produced tiles is shown in Figure 2.13.

0% 20% 40% 60% 80% 100%

Building density

0

1000

2000

3000

4000

5000

6000

N
u
m
b
er

o
f
ti
le
s

Average building density: 17.1%

Figure 2.13: Distribution of building density across all produced tiles in Trondheim.
Building density is defined by number of pixels positioned on top of buildings
divided by total number of pixels.

The average tile has a building density of approximately 17 %, that is 700 m2 of
4096 m2 is occupied by buildings. Of all the produced tiles approximately 8.32 %
end up having no positive mask pixels, i.e. no buildings are situated within these
tiles.

Chapter 2: Data and Pre-Processing 21

2.6 Surface Rasterization Algorithm

P1

P2

Figure 2.14:
Three-dimensional
polygonal gable roof.

The roof of a given building can be decomposed into a col-
lection of entirely flat polygons. This is an accurate data de-
composition in most cases, the exception being conic shapes
and other surfaces with continuous curvature which cannot
be perfectly represented with a finite set of flat surfaces.
A gable roof7, for instance, can be considered as a collec-
tion of two flat polygons, which when combined accurately
represent the roof in its entirety. Our intent is to construct
a machine learning pipeline which is able to identify such
three-dimensional roof surfaces from remote sensing data.

Although a set of vectorized, flat polygons is often the most suitable data rep-
resentation for geometric roof data in the GIS domain, it is not considered an ideal
representation for traditional machine vision data pipelines. Polygons can consist
of an arbitrary number of linear rings, and each linear ring can be represented
by an arbitrary number of vertices. The number of rings and vertices depends on
the complexity of the polygon’s shape. Deep learning model architectures, on the
other hand, are often restricted to training on and predicting observations of consis-
tent dimensionality. This is why machine vision architectures most often consume
and/or produce spatial information in the form of rasters rather than vectors, that
is, numeric arrays of consistent size and dimension. In order to reconcile these
conflicting requirements we now pose the following question,

“How can an arbitrarily sized set of three-dimensional polygons,
all of arbitrary complexity, shape, and orientation, be accurately repre-
sented in the form of a raster?”.

The ideal raster format would allow us to train on and predict roof surfaces in
vectorized polygon form, all the while applying the tried and tested techniques
from the machine vision literature which mainly concerns itself with rasters. We
will refer to such a raster as a surface raster in order to distinguish it from other
remote sensing raster types such as aerial photography and LiDAR data. The careful
formulation and construction of this surface raster format is considered one of the
most important problems to be solved in order to construct an efficient machine
learning pipeline for predicting roof surfaces.

2.6.1 Desirable surface raster properties

The ideal surface raster format should be both representative and targetable, prop-
erties which we now shall formally define. Start by denoting the domain which
consists of polygon sets of arbitrary size as V . A polygon in vector format will be
denoted as P, while a set of vector polygons will be denoted as P = {P1, P2, . . . }. A

7Gable roof — A roof which consists of two flat roof surfaces which slope in opposite directions.
The roof surfaces are connected along the highest, horizontal edge (ridge).

22 Martinussen: Roof Geometry Inference using Remote Sensing Data

Vector

domain

Raster

domain

regression
+

interpolation

clustering
+

post-processing

invertible

original raw
GIS data

&
processed

final output

CNN model
training/prediction

Figure 2.15: Invertible rasterization.

vector polygon set P is therefore a member of the superset domain V , denoted as
P ∈ V . Assume that we want to construct a surface raster of resolution height H
and resolution width W , and that this raster will consists of CR raster channels. If
we denote this surface raster domain as R and assume that raster values will take
values from the real number line, then we have R = RH×W×CR . Finally, assume that
the remote sensing raster data, X , has all the same dimensional properties as the
surface raster data with the possible exception of the number of raster channels,
which we will denote as CX , i.e. X = RH×W×CX . We can now define the surface
raster properties of representativeness and targetability with this notation in mind.

Representative
Converting surface polygons to the surface raster format and then back again
incurs negligible loss of information.
Define a suitable distance metric d : V × V → R which incorporates some
notion of the difference in spatial location and orientation between two
polygons sets. A perfectly representative raster format would allow us to
define a mapping from the vector domain to the surface raster domain,
m : V → R, for which there exists a functional inverse, m−1, such that

m−1 (m(P))≡ P, ∀P ∈ V.

=⇒ d
�

m−1(m(P)), P
�≡ 0, ∀P ∈ V.

That is, we can map from the vector polygon domain to the raster polygon
domain, and then back, all without losing any information. The vector
domain V is infinite-dimensional, while the raster domain R is by necessity
of finite and consistent size. It can therefore be concluded that no such
invertible mapping exists. For this reason we introduce the concept of a
pseudoinverse, m†, a function which minimizes d(m†(m(P)), P) for all P ∈ V .
A raster domain (and an associated mapping and pseudoinvertible mapping)
which produces negligible distance metrics after a round-trip mapping of
arbitrary polygon sets is considered to be representative.

Chapter 2: Data and Pre-Processing 23

Targetable
A raster format which is feasible as a modeling target for a machine learning
architecture.
We intend to construct a predictor, f̂ , which accepts remote sensing raster
data as input and produces the aforementioned surface raster data represen-
tation as output, i.e. f̂ : X → R, or equivalently f̂ : RH×W×CX → RH×W×CR .
Now assume f̂ to be parametrized according to the parameter vector θ , and
denote the parametrized prediction as Ŷ := f̂ (X ;θ). The intention is that
surface raster prediction Ŷ constructed from remote sensing data should
be as similar to the polygon-constructed raster Y := m(P) as possible. Sim-
ilar to the distance metric d defined previously, we now define a suitable
differentiable loss function L : R× R→ R which incorporates some notion
of difference between two surface rasters. The predictor f̂ can therefore be
parametrized such that this loss function is minimized when evaluated on
the predicted surface raster in conjunction with the ground truth surface
raster m(P):

θ opt := argmin
θ

∑

(Ŷ ,Y)

L
�

Ŷ ; Y
�

= argmin
θ

∑

(X ,P)

L
�

f̂ (X ;θ); m(P)
�

A raster mapping for which a suitable loss function can be constructed and
minimized is considered to be targetable.

The considerations of representativeness and targetability are in many ways di-
ametrically opposed when constructing a suitable surface raster format. As an
instructive example consider the choice of CR, the number of raster channels used
by the surface raster. Since the mapping m maps from a infinite-dimensional space
to a finite-dimensional one, it can be considered a compression method of sorts.
The smaller the value of CR, the greater the compression, and subsequently its
associated compression loss. Thus the greater number of raster channels, the more
representative the raster format can become. On the other hand, when CR grows
large it is natural to assume that the increasing degree of freedom in the data
format allows for many equivalently accurate representations of the same polygon
collection. This ambiguity will result in a difficulties when formulating a proper,
convex loss function with single, global minima. The targetability of the raster
format may therefore suffer from large values of CR.

Although it is the surface raster loss function we minimize in practice, it is
actually not what we are really interested in minimizing. The surface raster is in
essence only an intermediate data format which is intended to be converted back
into the vector domain by the pseuo-inverse m†. The underlying idea is that if we
minimize the difference between Ŷ and Y , we implicitly minimize the difference
between m†(Ŷ) and P. This assumes that L is a good loss surrogate for functional

24 Martinussen: Roof Geometry Inference using Remote Sensing Data

composition d ◦m†, by which we mean that θ opt also is a good minimizer for:

∑

(X ,P)

d
�

m†(f̂ (X ;θ)), m†(m(P))
�

.

For a sufficiently representative raster mapping this should also imply that θ opt
also is a good minimizer for:

∑

(X ,P)

d
�

m†(f̂ (X ;θ)), P
�

.

This is the metric we really intend to minimize, but can only do so implicitly with a
good surrogate loss function, and a raster format that is sufficiently representative
and targetable.

2.6.2 The “surface normal” raster format

We want to construct raster arrays (tiles) which represent different types of GIS data.
Each such raster tile represents GIS data corresponding to a specific geographic
area, the extent of which is specified by a bounding box B(c, w, h). In our case
we intend to construct square tiles with areas of 4096m2, i.e. having width and
height w = h = 64m. All of the bounding boxes have centroids c such that they
are situated within the Norwegian municipality of Trondheim. Denote the set of
all these bounding boxes as B,

B =
�

B(c1, 64m,64 m), B(c2, 64m, 64m), . . . B(c|B|, 64 m,64 m)
	

=
�

B1, B2, . . . , B|B|
	

.

Our bounding boxes are constructed from cadastral plots in Trondheim, a set of size
|B|= 64 146. We will restrict ourselves to constructing raster arrays of consistent
resolution height H = 256 and resolution width W = 256. This results in 2562

“pixelized” GIS measurements per raster tile, or equivalently, 16 raster pixel values
per meter squared. A specific bounding box B(c, 64 m,64 m) will therefore be
represented by a set of 256× 256× C raster arrays consisting of C raster channels.
We have already described raster arrays representing different types of GIS data,
such as RGB aerial photography (C = 3), LiDAR elevation data (C = 1), or building
footprint segmentation masks (C = 1). The idea is now to construct an entirely
new raster format which is able to represent a set of three-dimensional polygons,

P = {P1, P2, . . . , P|P|}.

In our case P consists of all roof surfaces in Trondheim, a set of size |P| = 293 336.
Our surface raster format, which we will refer to as the “surface normal” raster,
is intended as a format which is both representative and targetable. We start by
imposing two key assumptions on the polygons contained by P.

Chapter 2: Data and Pre-Processing 25

A1 All polygons P ∈ P are perfectly planar. That is, for every polygon you
can determine β0, βx , and βy such that z = β0 + βx x + βy y for all vertices
(x , y, z) representing the given polygon.

A2 All polygons P ∈ P are mutually non-overlapping when projected into the
x y-plane, the x y-plane being the sea level.

These assumptions are in fact not satisfied by the Trondheim roof surface polygon
dataset, but these issues are rectifiable. Assumption A1 is nearly satisfied and
can be solved by regression with negligible error. This will be elaborated upon in
Section 2.6.5. Assumption A2 can be solved with a suitable “conflict resolution”
method which determines which polygon should be considered at each pixel
location. Such a conflict resolution method will be described in Section 2.6.3. For
now it is easier to describe the surface normal raster with these assumptions in
place. We will introduce one final assumption:

A3 All polygons P ∈ P are simple polygons without any interior hulls, and are
thus representable by a single exterior ring. The exterior ring is represented
as an ordered sequences of (x , y, z) coordinate tuples, and we can therefore
denote any polygon P ∈ P as

P = [(x1, y1, z1), (x2, y2, z2), . . . , (x|P|, y|P|, z|P|), (x1, y1, z1)],

where |P| denotes the number of unique vertices. The first and last coordinate
tuples in any linear ring are always identical in order to close the ring.

Assumption A3 is solely introduced for notational simplicity. Keeping track of
several linear rings for each polygon will substantially complicate all expressions
that will follow. There is nothing preventing the surface normal raster format for
being generalized to polygons with interior hulls, and our implementation does in
fact take interior hulls into account when constructing the surface normal raster.

Under the assumption of all polygons in P being perfectly planar we are
able to decompose any polygon P ∈ P into two constituent sub-components: its
two-dimensional projection and its planar equation. The first sub-component is the
projection of the polygon into the x y-plane,π2D (P), making the three-dimensional
polygon two-dimensional. This simple projection is simply performed by truncating
the z-component of each (x , y, z)-vertex in the polygon:

π2D (P) = π2D

�

[(x1, y1, z1), (x2, y2, z2), . . . , (x|P|, y|P|, z|P|), (x1, y1, z1)]
�

= [(x1, y1), (x2, y2), . . . , (x|P|, y|P|), (x1, y1)]). (Projection mapping)

The projection mapping π2D (P) has also been illustrated in Figure 2.16.

The second sub-component is the parametric description of the plane on which
all vertices of the given polygon lie. Denote this mapping as β(P) and define it

26 Martinussen: Roof Geometry Inference using Remote Sensing Data

y

x

z
(x1, y1, z1)

(x1, y1)

(x2, y2, z2)

(x2, y2)

(x3, y3, z3)

(x3, y3)

(x4, y4, z4)

(x4, y4)

π2D

The three-dimensional polygon is shown in red, while the two-dimensional
projection is shown in blue.

Figure 2.16: Projection of three-dimensional polygon onto x y-plane by π2D (·).

according to the following relationship,

β (P) :=

β0
βx
βy

 , such that z = β0 + βx x + βy y for all vertices (x , y, z) ∈ P

(Planar mapping)

The original three-dimensional polygon can be easily reconstructed in a lossless
manner from the two sub-components, as illustrated in Figure 2.17, while still
being a less redundant representation of the polygon.

P = [(x1, y1, z1), (x2, y2, z2), . . . , (x1, y1, z1)]

decomposition

π2D (P) = [(x1, y1), (x2, y2), . . . , (x1, y1)] β =

β0
βx
βy

reconstruction

P = [(x , y,β0 + βx x + βy y) | (x , y) ∈ π2D (P)]

Figure 2.17: The decomposition and reconstruction of a three-dimensional poly-
gon.

Now the idea is to create two separate rasters, one which represents π2D (P), and
another one which represents β(P). The task of rasterizing π2D (P) is quite simple,

Chapter 2: Data and Pre-Processing 27

it is a two-dimensional polygon which can be represented as a binary mask as
explained earlier.

Si, j =

¨

1, if there exists P ∈ P such that π2D (P) covers πB (i, j) .
0, otherwise.

(semantic segmentation raster)

Where we have defined πB (i, j) as a function that maps array pixel coordinates
(i, j) to the respective coordinate in the UTM coordinate system in which the
polygons P ∈ P are specified. Given that we have a raster array of resolution height
H and width W , which covers a geographic area represented by the bounding
box B = B(c, w, h) centered at c, with geographic width w and height h, and that
(i, j) = (0, 0) represents the upper left (northwestern) corner of the bounding box,
then we have:

πB (i, j) = c +
1
2

�−w
h

�

+

� w
W j
− h

H i

�

When it comes to the rasterization of β (P) = [β0,βx ,βy]
T , we start by noticing

that the normal vector of the plane can be constructed from β (P) in the following
manner:

β (P) =

β0
βx
βy

 ⇐⇒ n (β (P)) =
1

q

β2
x + β2

y + 1

−βx
−βy

1

 :=

nx
ny
nz

(Normal planar map)
The relationship between the equation of the plane and the associated surface
normal vector is illustrated in Figure 2.18.

xy

z

n = 1
q

β2
x+β2

y+1

−βx
−βy

1

1

βx

1

βy

β0

The plane is defined by z = β0+βx x +βy y . The elements of the parameter vector
β are shown in orange, while the normal vector n is shown in blue.

Figure 2.18: The relationship between the equation of the plane, β (P), and the
surface normal vector, n (β (P)).

28 Martinussen: Roof Geometry Inference using Remote Sensing Data

The following restrictions on n (β (P)) hold by construction,

‖n (β (P))‖2 =
Ç

n2
x + n2

y + n2
z ≡ 1,

nz ≥ 0.

With other words, the normal vector has been constructed such that it is of length
1 in the Euclidean norm, and that it always points upwards. Given that we can
easily determine β (P) for any polygon, we now define the following raster format,

Ni, j =

¨

n (β (P)) , if π2D (P) covers πB (i, j) .
0 := [0,0, 0]T , if no such P ∈ P exists.

(surface normal raster)

This is a raster format consisting of three raster channels, as each pixel location (i, j)
in the raster “contains” a three-dimensional normal vector. It should now become
apparent why we made assumption A2 earlier, that is, all polygons P ∈ P should
be mutually non-overlapping after being projected by π2D (·). If more than one
polygon covers the coordinate πB (i, j), then the value for Ni, j becomes ambiguous.
You may now ask why we rasterize P into both a surface normal raster, N , and a
semantic segmentation map, S, when S can be directly inferred from N. That is,
we can formulate S in form of N ,

Si, j =

¨

0, if Ni, j = [0,0, 0]T .

1, otherwise.

The reason is that this is a more targetable raster decomposition. We can now
construct two relatively independent predictors, f̂seg(X ;θ seg) and f̂norm(X ;θ norm),
which when combined form a main predictor f̂ according to,

f̂
�

X ;θ seg,θ norm

�

=

¨

f̂norm (X ;θ norm) , if f̂seg

�

X ;θ seg

�≥ 0.5.

[0,0, 0]T , otherwise.

Now an optimal value for θ seg can be found by training f̂seg on S as the ground
truth, using model architectures and loss functions from the semantic segmentation
literature. A model architecture and loss function can be likewise be chosen for
f̂norm entirely independent of the segmentation problem at hand. The normal vector
model architecture can for instance enforce || f̂norm||2 ≡ 1, and the respective loss
function can utilize this restriction of the model output and ground truth. Such
a “separation of concerns” has been shown to be beneficial for several model
architectures.

We can now rasterize any single polygon P ∈ P into two separate raster
formats, S and N , as illustrated in Figure 2.19. When generalizing from a single
three-dimensional polygon P to a set of polygons P, we can iteratively fill in the
values into a single pair of raster arrays, S and N , since the polygons are mutually
non-overlapping. In order to map from this raster domain, represented by S and N ,
back to the original polygon domain, represented by P, we propose the following
pseudoinverse mapping, m†,

Chapter 2: Data and Pre-Processing 29

Two-dimensional polygon
[(x1, y1), . . .]

Planar equation
zi = β0 + βx x i + βy yi

Three-dimensional polygon, P
[(x1, y1, z1), . . .]

π2D (P) β (P)

Segmentation mask, S
BH×W×1 = {0,1}H×W×1

rasterize (π2D (P))

Surface normal raster, N
1

q

β2
x+β2

y+1
· �−βx ,−βy , 1

�T

rasterize (β (P))

Figure 2.19: The deconstruction of a three-dimensional polygon into two separate
rasters formats.

Proposed m† – Partition semantic segmentation raster S such that all parti-
tions form contiguous pixel areas which share the same value of N . Recon-
struct β0 by inference from LiDAR input data.

It should be noted that this is in fact a lossy decomposition, making the raster
format not perfectly representative. The reason for this is that the parameter β0
has been entirely discarded when we rasterize β (P). The exact conditions under
which the surface raster format and associated inverse mapping becomes non-
representative will be discussed in detail in Chapter 4. For now, suffice it to say
that the following two conditions must be simultaneously satisfied.

1. There exists two polygons P1, P2 ∈ P such that π2D (P1) and π2D (P2) touch
borders when rasterized. That is, P1 and P2 form one single, contiguous area
in the semantic segmentation map S.

2. P1 and P2 share values for βx and βy , but not β0. That is, the plane of P1
and P2 share the same orientation in space, but not the same elevation.

In order to correct for the lossy decomposition into S and N , we must introduce a
third raster format into the mix. Given that the pixel coordinate [i, j]T maps to the
geographic coordinate [x , y]T , i.e. πB (i, j) = [x , y]T , then we define the surface
elevation raster as:

Zi, j =

¨
�

1, x , y
�

β (P) , if π2D (P) covers πB (i, j) .

−∞, if no such P ∈ P exists.
(surface elevation raster)

This surface elevation raster array enables us to define a perfectly representative
raster format and associated reverse mapping. In practice however, it will be shown
that the decomposition of P into S and N , discarding Z , is sufficient for accurate

30 Martinussen: Roof Geometry Inference using Remote Sensing Data

x

z

Sea level (z = 0)

Ground level

S1,1 = 1

Z1,1

N1,1

S1,2 = 1

Z1,2

N1,2

S1,3 = 1

Z1,3

N1,3

S1,4 = 1

Z1,4

N1,4

S1,5 = 0

Z1,5 = −∞
Illustration of surface elevation values, Zi, j , surface normal array values, Ni, j , and

segmentation mask, Si, j . Slice for i = 1 and 1≤ j ≤ 5.

Figure 2.20: Illustration of surface raster formats Z , N , and S.

roof geometry inference. The three surface raster formats presented so far are all
illustrated in Figure 2.20.

We will describe how to construct these three raster arrays from a practical
implementation perspective. We start by summarizing the entire implementation
in conceptual terms:

Given a set of bounding boxes B and a set of polygons P:

• Construct R-tree index for polygon collection P.
• Calculate and memoize β (P) for all P ∈ P.
• For each bounding box B ∈ B. . .
◦ Determine the subset of polygons PB ⊂ P which is at least partially covered

by the bounding box B. The aforementioned R-tree index is used in order
to substantially speed up this spatial query.

◦ Map all vertex coordinates of P ∈ PB to the pixel coordinate system
[0, 255]× [0, 255].
◦ For each pixel coordinate (i, j). . .
− Determine subset of polygons Pcover ⊂ PB which covers the area repre-

sented by the pixel (i, j). If |Pcover| = 0, set Zi, j = −∞, Ni, j = [0,0, 0]T ,
and Si, j = 0, and continue onto next iteration of loop.

− Fetch pre-calculated values for β(P) for all P ∈ Pcover.
− Given that πB (i, j) = [x , y]T , calculate surface elevation zP = β0 +
βx x + βy y for all P ∈ Pcover. Select polygon Pm with the greatest
corresponding elevation value zP .

− Set Zi, j = zPm
, Ni, j = n (β (Pm)), and Si, j = 1.

Chapter 2: Data and Pre-Processing 31

(a) Example of dormer roof causing overlapping
polygons. This public domain image has been
sourced from Wikimedia [15].

(b) Illustration of the “bird’s
eye view decision rule”.

(c) Three-dimensional polygons which
overlap when projected.

(d) Two-dimensional instance mask re-
sulting from the bird’s view decision
rule.

Figure 2.21: Illustration of overlapping surface polygons.

All of these steps will now be explained in more detail.

2.6.3 Handling overlapping surface polygons

Earlier we made the assumption that all polygons P ∈ P are mutually non-
overlapping when projected into the x y-plane by π2D (P). In reality, this is not the
case for our dataset. The non-overlapping assumption is often broken whenever
small “sub-surfaces” are situated upon larger “main” surfaces. Dormers8 often
cause surfaces to overlap in two dimensions, for example. Figure 2.21c illustrates
how the Trondheim surface polygon dataset P would represent a type of dormer,
namely one main roof surface (shown in red), and a dormer represented by two
separate flat surfaces (shown in blue and green). The key point is that the main
roof surface is a rectangular polygon without any interior hull where the dormer
surfaces are located. This results in the two dormer surfaces overlapping with the
single main roof surface when they are projected into the horizontal plane. As

8Dormer — Roof surface protruding out from the main roof surface, often in order to protect a
loft window. A dormer can be seen in Figure 2.21a

32 Martinussen: Roof Geometry Inference using Remote Sensing Data

mentioned before, this causes problems with the definition of the surface normal
vector raster, N , and surface elevation raster, Z , as the choice of polygon becomes
ambiguous. This ambiguity needs to be resolved with a decision rule, a rule which
determines which single polygon should be considered as applicable at locations
covered by multiple polygons. For our dataset, the “bird’s eye view decision rule”
produces sensible results in most cases, and is defined as follows.

Bird’s eye view decision rule — The polygon with the greatest elevation at
a given coordinate is the applicable polygon at that point.
More formally, for a pixel location (i, j) corresponding to the geographic
coordinate πB (i, j) = [x , y]T , we define the polygon shadow subset P(x , y)
as

P(x , y) := {P | P ∈ P and π2D (P) covers (x , y)} .
The applicable polygon at the pixel location (i, j), and the corresponding
geographic coordinate (x , y), is then defined as

P(x , y) := argmax
P∈P(x ,y)

[1, x , y]β (P) .

In other terms, the polygon shadow subset P(x , y) consists of all polygons that
are intersected by the line drawn from (x , y,−∞) to (x , y,∞), hence casting
a shadow on the point (x , y) when the sun stands at zenith (directly overhead).
The applicable polygon is the single polygon which ends up being hit by direct
sunlight at the given geographic point, thus casting a shadow upon all other
polygons in the polygon shadow subset. The bird’s view decision rule has been
illustrated in Figure 2.21b, and Figure 2.21d is an example of a two-dimensional
instance segmentation map generated with this rule from the three-dimensional
roof structure shown in Figure 2.21c. We can now update the definition of surface
elevation raster Z and the normal vector raster N , taking this new decision rule
into account,

Ni, j =

¨

n (β (P (x , y))) , if |P(x , y)| ≥ 1.

0 := [0,0, 0]T , otherwise.

Zi, j =

¨
�

1, x , y
�

β (P(x , y)) , if |P(x , y)| ≥ 1.

−∞, otherwise.

(2.1)

We will construct a computational procedure which is able to rasterize a given
polygon P ∈ P relative to a given bounding box B ∈ B. Denote this procedure as
Rasterize(P, B), and say that this procedure returns three rasters: a surface ele-
vation raster Zp, a surface normal raster Np, and a two-dimensional segmentation
mask Sp. We now want to generalize from the rasters Zp, Np, Sp which represent
a single polygon P ∈ P, to rasters Z , N , S representing an arbitrarily sized set of

Chapter 2: Data and Pre-Processing 33

polygons P. We start by initializing these arrays (Z , N , and S) with temporary
placeholder values,

Zi, j = −∞, Z ∈ RH×W×1,

Ni, j = [0, 0,0]T , N ∈ [0,1]H×W×3,

Si, j = 0, S ∈ BH×W×1.

This initialization is implemented by the procedure ConstructPlaceholderAr-
rays(). Now, the idea is to iterate over the polygons P ∈ P, rasterize them individ-
ually with Rasterize(), and fill these arrays into the global mutable arrays Z , N ,
and S by some decision rule implemented by FillValues(). The main loop will
look like follows,

def PreprocessRaster(P, B):
for B in B:

Z , N , S← ConstructPlaceHolderArrays()
for P ∈ P:

Zp, Np, Sp← Rasterize(P, B)
FillValues(from= [Zp, Np, Sp], into= [Z , N , S])

SaveToHashLookup(data= [Z , N , S], hash= B).

SaveToHashLookup() is a procedure which persists the arrays Z , N , and S, to disk
for later retrieval. The bird’s view decision rule can therefore be implemented in
the following procedural manner,

def FillValues(from= [Zp, Np, Sp], into= [Z , N , S]):
for i ∈ {0,1, . . . , 255}:

for j ∈ {0, 1, . . . , 255}:
If (Sp)i, j = 0 or (Zp)i, j ≤ Zi, j: continue onto next iteration of inner loop
Insert Si, j ← 1, Ni, j ← (Np)i, j , and Zi, j ← (Zp)i, j .

2.6.4 Handling expensive spatial queries

The naive implementation of PreprocessRaster(P, B) provided above invokes
Rasterize(P, B) a total of |P||B| times. In our case, using bounding boxes and roof
surface polygons from Trondheim, we have |P|= 293336 and |B|= 64 146, and
thus |P||B|= 18816 331056. This is obviously an infeasible number of iterations,
no matter how efficiently Rasterize(P, B) is implemented. A better approach is
to reduce the number of iterations performed by the inner loop over P, utilizing
the fact that only polygons P ∈ P for which π2D (P) intersects with B will ever
contribute with values to the raster arrays. We implement such a filter procedure
in IntersectingFilter():

34 Martinussen: Roof Geometry Inference using Remote Sensing Data

0 20 40 60 80 100 120 140

Number of surface polygons contained by tile B ∈ T , |PB|

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%
Pe

rc
en

ta
ge

of
til

es
|PB|= 28.4

|PB| ± SD(|PB|) = (6.1, 50.7)

Figure 2.22: Trondheim distribution of number of intersecting surface polygons
contained by each raster tile B ∈ B.

def IntersectFilter(P, B):
return {P | P ∈ P and π2D (P) intersects with B}

Using IntersectingFilter() we can improve upon PreprocessRaster() as fol-
lows:

def PreprocessRaster(P, B):
for B in B:

Z , N , S← ConstructPlaceHolderArrays()
PB ← IntersectingFilter(P, B)
for P ∈ PB:

Zp, Np, Sp← Rasterize(P, B)
FillValues(from= [Zp, Np, Sp], into= [Z , N , S])

SaveToHashLookup(data= [Z , N , S], hash= B).

If we denote the average size of the set IntersectFilter(P, B) over B ∈ B as |PB|,
that is,

|PB|=
1
|B|

∑

B∈B

�

� {P | P ∈ P and π2D (P) intersects with B}
�

�,

then the number of invocations of Rasterize(P, B) is reduced to |B||PB|. Specif-
ically, for our dataset |PB| ≈ 28.4 and |B||PB| = 1822 376. The full empirical
distribution of |PB| for the Trondheim dataset is provided in Figure 2.22. Although
the number of invocations of Rasterize(P, B) has been greatly reduced, there has

Chapter 2: Data and Pre-Processing 35

been introduced an additional cost of invoking IntersectFilter(P, B) a total
of |B| times. A naive implementation of IntersectFilter(P, B) has computa-
tional cost that is linearly proportional to |P|, which makes the introduction of
IntersectFilter()moot from an asymptotic perspective (it results in a substantial
speedup for our finitely sized dataset, however). The solution is to pre-compute
a so-called R-tree spatial index, which when first computed, allows for almost
instantaneous intersection filtering[16].

def PreprocessRaster(P, B):
RTreeIndex← GenerateRTreeIndex(P)
for B in B:

Z , N , S← ConstructPlaceHolderArrays()
P̂B ← RTreeIndex(B)
for P ∈ P̂B:

Zp, Np, Sp← Rasterize(P, B)
FillValues(from= [Zp, Np, Sp], into= [Z , N , S])

SaveToHashLookup(data= [Z , N , S], hash= B).

The computational cost of RTreeIndex(B) is O (log |P|), making the time com-
plexity of PreprocessRaster(P, B) as a whole O

�

|B||PB| log |P|
�

. It should also
be mentioned that PreprocessRaster() is a highly parallelizable process. The
introduction of an R-tree index and splitting the processing of B over 12 cores/24
threads results in a reduction in computation from approximately 24 hours to only
just over 40 minutes for the Trondheim dataset.

2.6.5 Handling non-planar polygons

Let |P| denote the number of unique vertices required in order to represent a
polygon P ∈ P, and assume that all polygons P ∈ P are simple polygons without
any interior hulls (assumption A3). We can therefore denote the polygon P as

P = [(x1, y1, z1), (x2, y2, z2), . . . , (x|P|, y|P|, z|P|), (x1, y1, z1)]
:= [p1, p2, . . . , p |P|, p1].

In Section 2.6.2 we imposed assumption A1 on P, namely that all the three-
dimensional vertices (x , y, z) required in order to represent a given polygon P ∈ P
must lie exactly flat on a three-dimensional plane. That is, there exists β (P) =
[β0,βx ,βy]

T such that

z = β0 + βx x + βy y for all vertices (x , y, z) representing P.

Three unique polygon vertices, p i, p j, and pk, which do not form a straight
line is sufficient in order to perfectly represent the plane. It is therefore easy to
implement a procedure for calculating β (P), the definition of which was provided
in Equation (Planar mapping) on Page 26, and likewise for n (β (P)) as defined
in Equation (Normal planar map) on Page 27. In reality assumption A1 does not

36 Martinussen: Roof Geometry Inference using Remote Sensing Data

hold for our dataset. The polygon vertices are more accurately described by the
following relationship

z = β0 + βx x + βy y + ε for all vertices (x , y, z) representing P,

for some error term ε caused by measurement errors, data entry errors, or other
unknown causes. The accurate determination of β (P) depends on the behaviour
of the error term ε and will heavily depend by the nature of the surface polygon
dataset. We will argue that an ordinary least squares predictor, denoted as bβ (P),
is sufficiently accurate for our use, where we define bβ (P) as

bβ (P) :=
�

X T
x y X x y

�−1
X T

x y z, where X x y =

1 x1 y1
1 x2 y2
...

...
...

1 x|P| y|P|

, z =

z1
z2
...

z|P|

.

In order to investigate if bβ (P) is a sufficiently accurate estimator for β (P), we will
compare the original vertex coordinates (x , y, z) with the fitted vertex coordinates
(x , y, ẑ), where ẑ is constructed from the linear predictor

bz = bfz
�

x , y; bβ (P)
�

= bβ0 + bβx x + bβy y.

We can now define the vertex residuals as

ei := zi − ẑi

= zi − [1, x i , yi] bβ (P) , for i ∈ {1, 2, . . . , |P|}.

And also the coefficient of determination, R2, for a given polygon regression fit.

R2 := 1−
∑|P|

i=1 e2
i

∑|P|
i=1(zi − z̄)2

, where z̄ :=
1
|P|

|P|
∑

i=1

zi .

The distribution of R2 over all Trondheim polygons is shown in the top part
of Figure 2.23, with a median R2 value of 0.99998, which definitely should be
considered a good fit. Of similar interest is the greatest absolute vertex residual of a
given polygon, defined as

emax := max
i∈{1,...,|P|}

|ei|,

the distribution of which is plotted in the bottom part of Figure 2.23. This “maxi-
mum vertex deviation” goodness of fit metric also shows favorable results. A final
quality assurance metric can be inspected in order to confirm that the polygons
have been correctly fitted; the LiDAR residual defined as

Ei, j := X i, j − Zi, j , for indices (i, j) where Si, j = 1.

Chapter 2: Data and Pre-Processing 37

0.9990 0.9992 0.9994 0.9996 0.9998 1.0000

R2

25000

50000

75000

100000

125000

150000

N
um

be
r

of
po

ly
go

ns
,
P

∈
P

Median(R2) = 0.99998

IQR = [0.99905, 1.00000]

0.00m 0.02m 0.04m 0.06m 0.08m 0.10m
emax

25000

50000

75000

100000

125000

150000

N
um

be
r

of
po

ly
go

ns
,
P

∈
P Median(emax) = 0.00m

IQR = [0.00m, 0.02m]

Top — The distribution of the coefficient of determination, R2, for an ordinary
least squares estimator for β (P) over all Trondheim polygons P ∈ P.

Bottom — The distribution of the maximum distance between a vertex in a
polygon and its fitted plane, emax.

Figure 2.23: Statistical summary of the regression fits of the Trondheim surface
polygons.

38 Martinussen: Roof Geometry Inference using Remote Sensing Data

Surface polygons, P

Rasterize(P, B)

Surface elevation, ZLiDAR, X

-6m

-4m

-2m

0m

2m

4m

6m

LiDAR residuals, E

− =

Bounding box, B

Surface polygons, P

Rasterize(P, B)

Surface elevation, ZLiDAR, X

-6m

-4m

-2m

0m

2m

4m

6m

LiDAR residuals, E

− =

Bounding box, B

Figure 2.24: The construction of LiDAR residuals from a surface elevation raster.

-200cm -150cm -100cm -50cm 0cm 50cm 100cm 150cm 200cm
LiDAR residual, Ei,j

0.00%

0.50%

1.00%

1.50%

2.00%

Fr
eq

ue
nc

y

Ei,j = −6.44cm

Median(Ei,j) = 2.06cm

Figure 2.25: Distribution of LiDAR residuals calculated over all bounding boxes
B ∈ B for the Trondheim dataset.

Chapter 2: Data and Pre-Processing 39

The LiDAR residual is with other words the difference between the roof height
calculated from the three-dimensional roof surface polygon dataset at a given coor-
dinate, and the LiDAR height measurement at the same coordinate. An illustration
of the LiDAR residual and how it is constructed is provided in Figure 2.24, and
the distribution of the Trondheim LiDAR residuals is provided in Figure 2.25. The
discrepancy between the polygon surface elevation and LiDAR measurements can
be attributed to three main mechanisms:

1. Positive residuals caused by objects and structures placed upon roof surfaces,
e.g. chimneys, which are not part of the surface polygon dataset itself.

2. Negative residuals caused by LiDAR measurements taken close to the edges
of roof surface situated adjacent to vertical drops, measuring the height of
building walls or the nearby ground instead.

3. Normally distributed residuals caused by LiDAR measurement errors centered
around zero but with non-zero variance.

The first two mechanisms can be observed within the focused area in Figure 2.24,
while the zero-centered measurement error can be observed in the bell shaped
distribution shown in Figure 2.25. Mechanism 1 is more common than mechanism
2, but smaller in absolute extent, causing the empirical mean of the LiDAR residuals
to become negative (−6.44 cm), while the empirical median is positive (2.06 cm).

It is possible to discard any polygon P ∈ P that performs badly under a given
goodness of fit metric, R2 or emax for instance, but this would also require us to
discard all the respective bounding boxes B ∈ B that π2D (P) at least partially
intersects with. This could be done in order to prevent training a machine learning
model on false ground truth data. We do not consider this to be necessary for the
Trondheim polygon dataset, but it may be necessary for other surface polygon
datasets of lower quality.

40 Martinussen: Roof Geometry Inference using Remote Sensing Data

2.7 Overview

The preprocessing pipeline responsible for transforming raw GIS data into a format
suitable for machine learning is outlined in Figure 2.26.

𝑽𝒆𝒄𝒕𝒐𝒓 𝒅𝒂𝒕𝒂

Cadastral plots

Roof surfaces

Convert to
GeoPackage

(.gpkg)

Project into
UTM zone

Zero-buffer

𝑷𝒓𝒐𝒄𝒆𝒔𝒔𝒆𝒅 𝒗𝒆𝒄𝒕𝒐𝒓 𝒅𝒂𝒕𝒂

Cadastral plots

Roof surfaces

Tiling algorithm

Two-dimensional projection

Surface rasterization

𝑹𝒂𝒔𝒕𝒆𝒓 𝒅𝒂𝒕𝒂

Aerial Photography (RGB)

Elevation data (LiDAR)

Project into UTM zone

Construct merged
VRT dataset

𝑹𝒂𝒔𝒕𝒆𝒓 𝒕𝒊𝒍𝒆𝒔

RGB

LiDAR

Semantic segmentation

Instance segmentation

Surface normals

Surface elevation

Masking algorithm

Disk cache

Figure 2.26: Overview of the GIS preprocessing pipeline developed in order to
train machine learning models on geospatial data.

Chapter 3

Modeling

The field of computer vision got started in the early 1970s [17, p. 10], where one
of the problems being tackled is the three-dimensional reconstruction of a scene
from two-dimensional data. Most of the early research in the field revolved around
manually designed feature extraction and processing techniques, but statistical
techniques started to become popular in the 1990s [17, p. 15]. The statistical
approach eventually morphed into the field of machine learning, where most of
the research advances are made today [17, p. 17].

We have already provided an overview of the problem domains of interest
in Section 1.1.1, but we will now provide a more in-depth description of all the
relevant theoretical concepts. Convolutional neural networks (CNNs) have been ap-
plied to image segmentation problems with great success [6, p. 1], and Section 3.1
provides a theoretic overview of the elementary building blocks used to construct
modern CNN architectures. Section 3.2 will go more in-depth into image segmenta-
tion specifically, treating topics such as popular evaluation metrics, optimization
losses, and the current state-of-the-art. The section is finalized by a description of
the CNN architecture used in this work, namely the U-Net architecture. Having
explained the relevant concepts of semantic segmentation, Section 3.3 transitions
to the problem of predicting rasterized surface normal vectors. The section starts
by describing previous related work, followed by a description of a modified U-Net
architecture for predicting such vectors. Finally, suitable loss functions for surface
normal vector predictions are discussed. Sections 3.4 and 3.5 end this chapter
by describing the general process of training CNN networks and how the remote
sensing raster data should be normalized before being passed into the neural
networks.

3.1 Convolutional Neural Networks (CNNs)

There exists countless variations of the CNN model architecture, but there are
still some elementary building blocks which they often have in common. We will
start by sketching generic big picture of CNNs before going into detail about each
modular building block. Figure 3.1 illustrates the architecture of U-Net, and we will

41

42 Martinussen: Roof Geometry Inference using Remote Sensing Data

use this figure to illustrate the common concepts of segmentation CNNs without
considering the unique properties of U-Net specifically.

6464 I

128 128 I/
2

256 256 I/
4

512 512 I/
8

1024 1024 I/
16

Bottleneck Conv

512 512 512 512 I/
8

256 256 256 256 I/
4

128 128 128 128 I/
2

64 64 64 64 I

Sigmoid

Figure 3.1: Illustration of the U-Net architecture for single-class segmentation, a
typical example of an encoder/decoder structure. Convolution layers are shown in
orange, and max pooling layers in red. Arrows indicates how data is forwarded
through the network, top arrows being skip connections. The right hand side shows
the upscaling performed by transposed convolution until the original resolution is
restored and segmentation predictions can be formed with the sigmoid activation
function (shown in purple). Figure has been generated by modifying a tikz
example provided in the MIT licenced PlotNeuralNet library available at this
URL: https://github.com/HarisIqbal88/PlotNeuralNet.

A CNN consists of several layered blocks operating over identical input dimen-
sions within each block. These blocks are shown as contiguous boxes in Figure 3.1.
The first layer in each block is a convolutional layer, which is a type of trainable
feature extraction where several filtered feature maps are constructed. Each fea-
ture map is passed through a nonlinear activation function and the activations are
subsequently downsampled in order to reduce the resolution. The downsampling
is performed by a pooling layer and the output is forwarded to the next block. The
number of feature maps that are extracted from the previous pooled activations
increases as the resolution is decreased, and the right half of the architecture is
eventually responsible for upsampling the resolution back to the original resolution
by the means of deconvolution. The upsampling half of this network is not common
to all CNNs, as CNNs tasked with bounding box regression and classification are
not required to restore the original resolution before prediction. The upcoming
sections will describe these concepts in more detail.

3.1.1 Convolution

As the name implies, a central concept of convolutional neural networks is the
convolution operator. Let the kernel, w, be a Hk ×Wk real matrix, and denote the
activation of the previous layer at position (x , y) as ax ,y . The convolution operator,

https://github.com/HarisIqbal88/PlotNeuralNet

Chapter 3: Modeling 43

þ, is then defined as

wþ ax ,y =
∑

i

∑

j

wi, j ax−i,y− j , ax ,y ∈ R, w ∈ RHk×Wk ,

where (i, j) spans the index set of the kernel. The region around ax ,y which is
involved in the convolution is referred to as the receptive field. We can generate a
filtered image by moving this receptive field over the entire input image. The step
size used when moving the receptive field is referred to as the stride size of the
convolution. Such a moving convolution is illustrated in Figure 3.2.

0 0 0 0 0 0
0 1 2 0 0 0
0 5 3 0 4 0
0 0 0 0 7 0
0 9 3 0 0 0
0 0 0 0 0 0

Zero-padded input

∗

1 1 1
1 1 0
1 0 0

Kernel

=

1 8 5 0
8 11 5 4
8 17 10 11
9 12 10 7

Convolved output

Figure 3.2: Visualization of a kernel convolution with a 3×3 kernel over an image
of size 4× 4 with additional zero-padding and stride size of 1× 1. The receptive
field is shown in orange, the respective kernel weights in blue, and the resulting
convolution output in green. The zero padding of the input image is shown in
gray.

In the case of input images or activations comprised of more than one channel,
independent two-dimensional kernels are constructed for each channel and the
convolved outputs are finally summed in order to attain a single feature map.
The concept of a kernel predates neural networks as it has been used for feature
extraction in the field of image processing for many years [17, p. 11]. The kernel
weights determine the type of features being extracted from the given input image,
some common interpretable kernels are given below.

w1 =

0 0 0
0 1 0
0 0 0

Identity kernel

, w2 =

−1 −1 −1
−1 8 −1
−1 −1 −1

Edge detection kernel

, w3 =
1
9

1 1 1
1 1 1
1 1 1

Normalized box blur kernel

, w4 =
1

16

1 2 1
2 4 2
1 2 1

Gaussian blur kernel

.

It is important to notice that kernel convolution has the additional effect of
reducing the dimensionality of the input image. Firstly, pixels along the image
border are partially ignored since the receptive field can not be properly centered
on such pixels. Secondly, a horizontal stride of Ws > 1 or a vertical stride of Hs > 1
will cause additional dimensional reduction. For an image of size H ×W and a
kernel of size Hk ×Wk, the input image is reduced to size

b(H −Hk +Hs)/Hsc × b(W −Wk +Ws)/Wsc ,

44 Martinussen: Roof Geometry Inference using Remote Sensing Data

as shown by [18]. The reduction in dimensionality when using stride sizes of one
is often undesirable, and for this reason it is common to add a padding filled with
zero-values along the edges of the input image. Applying a padding of height Hp
at the horizontal borders and a padding of width Wp at the vertical borders results
in a feature map of size

�

(H −Hk +Hs +Hp)/Hs

�× �(W −Wk +Ws +Wp)/Ws

�

.

If we assume the input height and width to be divisible by the stride height and
width respectively, we can set Hp = Hk − 1 and Wp = Wk − 1 in order to attain
an output shape of (H/Hs)× (W/Ws) [18]. Such a padding is shown in gray in
Figure 3.2.

CNNs apply multiple different convolutions to the same input, resulting in a set
of differently filtered outputs. After having applied the layer’s activation function to
the output (see upcoming section about “activation functions”) and the activations
have been downsampled (see upcoming “pooling” section), the filtered outputs are
passed onto the next layer. The number of filters are usually increased as you move
deeper into the network where the resolution has been increasingly downsampled.
Unlike classical image processing, where kernel weights are carefully selected in
order to construct an intended type of feature extraction, CNNs let each kernel
weight be a trainable parameter. As the network is trained each kernel learns to
extract features which are of use for the subsequent layers.

An important aspect of convolution is that the kernel weights remain unchanged
as the receptive field is moved over the input image. This parameter sharing
results in regions being treated identically no matter where in the image they are
situated [19]. The sharing of parameters has the benefit of reducing the parametric
complexity of the network, thus decreasing the computational cost of training it.
Finally, compared to a more classical fully connected feedforward network, which
operates over flattened vectors, a fully convolutional neural network operates over
images in matrix form, thus taking the spatial relationship between pixels into
account.

3.1.2 Activation functions

So far we have only explained how a convolutional neural network consists of a set
of parametrized linear operations. Such a network, if left unaltered, is therefore
restricted to only approximating linear functions. The solution to this predicament
is to introduce the concept of an activation function, a nonlinear function applied
to the output from the convolutional layers. These activation functions were
originally inspired by the neuroscientific understanding of biological neurons [20,
p. 165], but have since been shown to be a theoretical prerequisite of the universal
approximation property of artificial neural networks [21, 22]. The logistic sigmoid
function, with its deep roots in probability theory, has been a popular choice of
activation function for neural networks since the inception of the field [23], and is

Chapter 3: Modeling 45

defined by

σ(x) :=
1

1+ e−x
=

ex

ex + 1
. (Sigmoid activation function)

Observe that limx→−∞σ(x) = 0 and limx→+∞σ(x) = 1, and that its derivative is
positive over the entire real number line. This makes it a bounded, differentiable,
monotonic function, and is therefore suitable for mapping the weighted output of
an artificial neuron in the domain (−∞,∞) into the range (0,1). This makes it
especially suitable for the final layer in neural networks intended for predicting
binary 0/1-responses. A closely related activation function, with many of the same
properties except that it maps into the range (−1,1), is the hyperbolic tangent
(tanh) function defined by

TanH(x) :=
ex − e−x

ex + e−x
. (Tanh activation function)

Although the sigmoid activation function has strong biological [23] and the-
oretical [21] underpinnings, it often suffers from the phenomenon of vanishing
gradients for network architectures consisting of three or more layers, which in
turn severely inhibits training. As an alternative to the sigmoid activation function,
the rectified linear unit (ReLU) was introduced in a paper [24] by Hahnloser et al.
in year 2000. It is defined as

ReLU(x) := x+ =max(0, x). (ReLU activation function)

The ReLU activation function has become the dominant activation function for use
in neural networks in recent years [25, p. 438] as it has been empirically shown to
adapt well to deeper neural networks [26].

3.1.3 Pooling

The last layer in a given CNN block is conventionally a downsampling operation,
most often referred to as a pooling layer. As with convolution, this operation
has biological influences as it is inspired by a model of the mammalian visual
cortex [19, p. 966]. The reduction in spatial resolution is considered to be one of
the main reasons for why CNNs portray a high degree of translational and rotational
invariance [27]. As with moving convolution, pooling is implemented by moving
a receptive field of size greater than 1, typically 2× 2, over the activations and
mapping these values into a lower dimensional space. There are several different
ways to define such a mapping, the two most common being max pooling and
average pooling, which respectively retrieve the maximum value and average value
from the receptive field. The former is exemplified in Figure 3.3.

46 Martinussen: Roof Geometry Inference using Remote Sensing Data

1 8 5 0
8 11 5 4
8 17 10 11
9 12 10 7

Activations
Pool operation

=

�

11 5
17 11

�

Pooled output

max

Figure 3.3: Example of a max-pooling operation with a receptive field of size
2× 2 and an identical stride size. The receptive field is shown in orange and the
respective pooled output is shown in green.

As can be seen in Figure 3.3, using a receptive field and stride of size 2×2 will
yield a downsampled image with one quarter as many pixels as the original input.

3.1.4 Batch normalization

The reparametrization of earlier layers when training deep neural networks results
in a distributional change in the feature layer forwarded to the next layers. This
forces all subsequent layers to adapt to the new “distributional circumstances”,
which in turn impedes the convergence of the optimization. This phenomenon,
referred to as internal covariate shift, was first identified in a paper [28] by Ioffe and
Szegedy (2015) where they propose a method called batch normalization in order
to counter this phenomenon. Suppose we have a layer activation a consisting of d
dimensions, i.e. a = (a(1), . . . , a(d)). First we standardize each feature dimension,
k, independently

ba(k) =
a(k) − E

�

a(k)
�

q

Var
�

a(k)
�

+ ε
, (Batch standardization)

where E [·] and Var (·) are respectively sample means and sample variances
over the current mini-batch, and ε is added for numerical stability. The result of
this standardization is a feature map where all filters have mean 0 and variance 1
for every mini-batch. The internal covariate shift has been practically eliminated
as a result.

This type of normalization alone may not be optimal in all cases, though, and is
best explained by constructing a somewhat contrived pathological example. Assume
a set of pooled layer activations a to be symmetrically distributed, and assume the
subsequent convolution layer to preserve this symmetry. After standardizing the
output, 50% of the values are expected to be negative, and all of these values will
be truncated to 0 if ReLU is the activation function of choice. This informational loss
may be suboptimal for the given network layer and must be accounted for. That is to
say, E [a] = 0 and Var (a) = 1 may be an unsuitable domain for the given activation
function. For this reason, we introduce two additional trainable parameters for
each feature dimension, γ(k) and β (k), and apply a second normalization step

Chapter 3: Modeling 47

y(k) = γ(k)ba(k) + β (k). (Trainable normalization)

The intent is to learn the values for the shift, β (k), and scaler, γ(k), which restores
the representative power of the given layer after the batch standardization.

3.1.5 Dropout

Dropout is a regularization technique for neural networks intended to prevent
“complex co-adaption of feature detectors” [29]. In practice this is achieved by
randomly omitting hidden nodes from the neural network during each training
step; effectively forcing hidden nodes to become less interdependent. An alternative
interpretation of the dropout procedure is that it is a computationally efficient
form of model averaging, each dropout permutation being a model instance. This
technique has been empirically shown to significantly increase the test performance
in several different settings.

Although originally intended for use in feedforward neural networks, dropout
has been extensively applied in CNN architectures as well [30]. Since there are no
“nodes” to be omitted in fully convolutional layers, the dropout procedure needs to
be adapted in order to be applicable in a CNN setting. One approach is to introduce
a randomly located square mask (cutout) in the input image [31]. Alternatively,
stochastic depth dropout randomly selects entire layers to be dropped, replacing
them with identity functions instead [32]. Dropout can also be integrated into
max pooling layers, ignoring values at random during the search for the maximum
value in the receptive field [33]. This has become known as max-pooling dropout
and is illustrated in Figure 3.4.

1 8 5 0
8 11 5 4
8 17 10 11
9 12 10 7

=

�

11 5
17 11

�

1 8 5 0
8 11 5 4
8 1 10 11
9 12 10 7

=

�

11 4
12 11

�

max

max

Dropout

Figure 3.4: An example application of max-pooling dropout using a receptive field
and stride of size 2×2. A dropout probability of p = 0.25 has been used. Dropped
values are shown as black boxes.

48 Martinussen: Roof Geometry Inference using Remote Sensing Data

3.2 Semantic Segmentation

Now that we have explained the generic building blocks of CNNs, we will go into
more specific details related to semantic image segmentation. The current state-of-
the-art, including the model architecture which we will use, will be discussed, but
we will start by describing popular segmentation metrics and losses.

Metrics and losses are of central importance when training and evaluating
machine learning models. Denote the parametrization of a given machine learning
model, f̂ , as θ , the input features as X , and the corresponding ground truth labels
as Y . In order to evaluate the performance of a given model parametrization, we
must formulate a cost- or performance-metric, P(f̂ (X ;θ); Y), which we intend to
respectively minimize or maximize. The performance metric encodes our notion
of what constitutes as a good model fit.

While the performance metric is what we really want to optimize, it may not be
suitable for numerical optimization, for example due to being non-differentiable
or too computationally costly. Machine learning optimization differs from classical
optimization in that the performance metric is indirectly maximized through the
optimization of a surrogate loss function [20, p. 272], L(f̂ (X ;θ); Y). The loss
metric is minimized in the hope of improving the performance metric indirectly,
and it is therefore of vital importance that there is a strong relationship between
performing well on the loss function and performing well on the performance
metric.

We will provide a summary of popular losses and metrics for single-class
semantic segmentation.

Chapter 3: Modeling 49

3.2.1 Accuracy, sensitivity, and specificity

In order to describe segmentation metrics, it is useful to define the following
quantities:

Condition Positive (P): Number of object class pixels in ground truth
mask.

Condition Negative (N): Number of non-object class pixels in ground
truth mask.

True Positive (TP): Number of pixels correctly predicted as being part of
object class (correctly identified).

True Negative (TN): Number of pixels correctly predicted as not being
part of object class (correctly rejected).

False Positive (FP): Number of pixel incorrectly predicted as being part
of object class (incorrectly identified).

False Negative (FN): Number of pixel incorrectly predicted as not being
part of object class (incorrectly rejected).

False positives (FP) are often knows as type I errors in statistics, and false negatives
(FN) as Type II errors. The greater the values of TP and TN, the better, and the
smaller the values of FP and FN, the better. A visual representation of these
classifications is given in Figure 3.5.

Ground Truth Predicted Mask TP TN FP FN

Figure 3.5: Binary segmentation problem of size 256× 256. The ground truth, a
rectangle of size 120× 80 is shown on the left. The “predicted” mask, shown in
the middle, is of the same size, but offset by (−30,−30). The right figure shows
the visual equivalent of a confusion matrix. True positives are shown in dark blue,
true negatives in light gray, false positives in green, and false negatives in red.

The simplest metric for semantic segmentation is the pixel accuracy metric.
This metric simply reports the percentage of pixels that were correctly classified.

50 Martinussen: Roof Geometry Inference using Remote Sensing Data

More formally, it can be defined as:

accuracy :=
T P + T N

T P + T N + F P + FN
=

T P + T N
P + N

The problem with the pixel-wise accuracy metric is that it does not take class
imbalances into account. Consider a problem where 95% of all pixels are considered
to be of class 0, and the remaining 5% of class 1. If we construct a model which
predicts 0 regardless of the feature inputs provided to the model, the model will
achieve a 95% accuracy score. This makes pixel-wise accuracy scores hard to
interpret when you do not know the class balance of the respective dataset and the
accuracy grouped by class. This is why it is often replaced by other metrics which
take imbalances into account. A pair of such metrics are sensitivity and specificity,
formally defined as:

sensitivity=
number of true positives

number of true positives + number of false negatives
=

T P
T P + FN

=
T P
P

specificity=
number of true negatives

number of true negatives + number of false positives
=

T N
T N + F P

=
T N
N

The sensitivity is therefore a measure of how good a given model prediction is
able to identify positives as a relative, fractional value. Likewise, the specificity is a
measure of how good a given model prediction is able to identify negatives.

3.2.2 Intersection over union and dice coefficient

Although the sensitivity and specificity metrics address the issue of class imbalances,
they are still two distinct metrics that need to be simultaneously inspected in order
to get a full overview of the model performance. Is it possible to construct a single
scalar metric which incorporates the ideas of both sensitivity and specificity? The
intersection over union (IoU) and dice coefficient (F1) are two metrics which try to
do exactly this.

The IoU metric, also known as the Jaccard index, is defined as the area of the
intersection between the predicted segmentation mask and the ground truth mask
divided by the union of these two masks, or more formally,

IoU =
|prediction∩ truth|
|prediction∪ truth| =

TP
TP+ FP+ FN

.

In the case of multiple classes IoU is calculated for each class independently and
the result is averaged, known as mean intersection over union (MIoU). MIoU is the
most commonly used segmentation metric in research and competitions due to
its simplicity and representativeness [34]. Notice how the IoU metric is bounded
between 0 and 1; IoU = 0 represents a complete “predictive miss”, while IoU = 1
represents a prediction in perfect accordance with the ground truth. A visualization
of this metric is given in Figure 3.6 below.

Chapter 3: Modeling 51

IoU =

Intersection

ov
er

Union

Figure 3.6: Visualization of single-class IoU metric.

An alternative metric is the dice coefficient, also known as the F1 score. The
dice coefficient is defined by taking twice the area of the intersection and dividing
by the sum of the areas of the two masks:

F1 =
2 · |prediction∩ truth|
|prediction|+ |truth| =

2 · TP
2 · TP+ FP+ FN

.

Again we observe that this metric is bounded to the interval [0,1], with the
same interpretation of the endpoints 0 and 1 as with the IoU metric. The visual
representation of this metric is given in Figure 3.7.

F1 =

2×Intersection

2× ov
er

Sum of areas

+

Figure 3.7: Visualization of the single-class dice coefficient metric, also known as
the F1 score.

You may have noticed that these two metrics are quite similar; they involve
the same quantities, only weighted differently, and map into the same interval. In
fact, we can construct an exact relationship between these two metrics1

IoU
F1
=

1
2
+

IoU
2

.

By inspection the two metrics must always be positively correlated, that is, as
one metric increases or decreases, the other must follow suit. A useful insight for
understanding how these two metrics actually differ is to observe how the IoU
metric is bounded by the dice coefficient:

F1

2
≤ IoU ≤ F1.

1The following relationship and the ensuing inequality bounds were noted by the Cross Validated
Stack Exchange user “Willem” here: https://stats.stackexchange.com/a/276144.

https://stats.stackexchange.com/a/276144

52 Martinussen: Roof Geometry Inference using Remote Sensing Data

The IoU is always less than or equal to the dice coefficient, but never smaller
than half the value. The fraction IoU/F1 is equal to 1 whenever the prediction
coincides with the ground truth and is equal to 1/2 whenever there is no overlap
at all. By drawing an analogy to the p = 1 (absolute/Manhattan) norm and p = 2
(Euclidean) norm, we can say that the IoU metric weighs the worst case of a
prediction more than the average case, and vice versa for the F1 metric.

3.2.3 Binary cross-entropy and soft losses

So far we have only discussed metrics which are discrete, non-differentiable func-
tions, thus making them unsuitable for direct optimization. As discussed earlier, we
need to introduce a differentiable surrogate loss function which can be optimized.
The key “trick” is to define a loss function over the continuous probability do-
main before it is discretized to the classification domain by thresholding. In order
to formulate proper loss functions, we will start by establishing some notation.
Denote the ground truth binary classification mask as S ∈ BH×W and the corre-
sponding features as X ∈ RH×W×C . Assume a model f̂ parametrized according to
θ which provides a probability estimate for S, the probability estimate denoted as
bS = f̂ (X ;θ) ∈ [0, 1]H×W . For notational convenience we will use a linear index in
order to denote single matrix elements, for instance bSi ∈ [0, 1] for i = 1, . . . , HW .

The most common loss function for binary classification tasks is the binary
cross entropy (BCE) loss function defined as

LBCE(bS; S) = −
HW
∑

i=1

Si log (bSi) + (1− Si) log (1− bSi). (3.1)

However, there are several issues with using the BCE as the loss function for seg-
mentation tasks. Firstly, it does not take class imbalances into account. The weighted
binary cross entropy (wBCE) is one attempt at accounting for class imbalances,
but weighting is highly task-dependent and has been shown to have negligible
performance improvement over BCE [35, p. 98]. Another issue with BCE and
wBCE is that they are poor surrogates for the segmentation metrics introduced in
the previous subsection. The solution is to introduce differentiable approximations
of these discrete segmentation metrics. Such an approximation for the IoU metric
is the soft Jaccard loss also known as the Jaccard distance [36], defined by

LSJL(bS; S) = 1−

HW
∑

i=1

bSiSi

HW
∑

i=1

�

bSi + Si − bSiSi

�

≈ 1− IoU. (3.2)

Notice that if bSi is restricted to only take values in {0, 1} then LSJL becomes equal
to 1− IoU. Other variants exists, and it is also common to add a smoothing factor
by adding a value δ to both the numerator and denominator and multiplying the

Chapter 3: Modeling 53

entire loss with the same value. A similar differentiable approximation of the dice
coefficient, called soft dice loss, has also been derived [37].

LSDL(bS; S) =
2

HW
∑

i=1

bSiSi

HW
∑

i=1

bS2
i +

HW
∑

i=1
S2

i

≈ 1− F1. (3.3)

Optimizing these two metric-sensitive losses have been shown theoretically
and empirically to indirectly maximize their respective surrogate metrics [35]. You
would think that if the dice coefficient has been chosen as the metric of interest
for a given problem, the soft dice loss should be used instead of soft Jaccard loss.
However, Bertels et al. have shown [35] that these two metric-sensitive losses are
equally good surrogates for each others metrics, and the choice is therefore mainly
a preferential one.

3.2.4 State-of-the-art

At the time of this writing, CNNs have largely surpassed all previous methods
for performing image segmentation [34], but it is still a relatively new field with
constantly new improvements being made. In the following section we will provide
an overview of the current state-of-the-art methods being applied within this field,
focusing on the unique aspects of each approach. Four CNN architectures are consid-
ered especially influential as they have become essential building blocks for many
segmentation architectures; AlexNet, VGG-16, GoogLeNet, and ResNet [34]. Note
that these architectures were initially intended for classification and localization
tasks only, but their conceptual ideas are important for segmentation architectures
as well.

AlexNet [38] won several image classification competitions when it was first
published in 2012, including the ILSVRC-2012 competition [34]. By employing five
convolutional layers, max-pooling layers, ReLU activation functions, and dropout,
followed up by a fully connected feedforward classification network, it outper-
formed the 2nd place contender by a relatively large margin.

The VGG-16 architecture [39] published in 2014 distinguished itself by stacking
several convolutional layers with small receptive fields in the first layers instead of
using few convolutional layers with large receptive fields. The result is a network
with fewer parameters and more applications of the non-linear activation functions
leading to an increased ability to discriminate inputs and reduced training times.
VGG-16 achieved an impressive 92.7% TOP-5 test accuracy in the ILSVRC-2013
classification competition, inspiring further research involving the techniques
employed by the architecture [34].

Substantially deep networks are prone to overfitting and are subject to ad-
ditional computational overhead. The GoogLeNet architecture [40] from 2014
introduced the inception module in order to combat this problem, a building block

54 Martinussen: Roof Geometry Inference using Remote Sensing Data

which allow networks to grow in depth and width with modest increases in compu-
tational overhead. The inception module discards the usual approach of ordering
convolutions in a sequential manner, instead opting for several parallel pooled
convolution branches with different dimensional properties. Finally a 1× 1 con-
volution is applied to each branch in order to reduce the dimensionality of the
output and the concatenated result is passed onto the next layer.

The ResNet architecture [41] from 2016 was the result of a continued effort
to make deeper architectures feasible. By training a model with 152 layers ResNet
won the ILSVRC-2016 competition with a remarkable 96.4% accuracy [34]. This
depth is achieved by introducing skip connections between layers, an effective way
to combat vanishing gradients.

The success of convolutional architectures for classification tasks were eventu-
ally adapted for segmentation tasks as well. A fully convolutional, pixel-to-pixel
classification network was first published by Long et al. in 2015 [42]. AlexNet, VGG-
16, and GoogLeNet were successfully adapted in order to achieve state-of-the-art
performance on the PASCAL-VOC segmentation dataset.

Fully convolutional neural networks (FCNN) quickly became the dominant
technique used in segmentation challenges after the success in classification and
localization challenges. The U-Net architecture, originally published in 2015 and
intended for biomedical image segmentation, has become one of the more popular
segmentation architectures. U-Net has an encoder/decoder-structure; the network
starts with a contracting path where context is extracted from the input image.
This is followed by a symmetric expanding path in order to upscale the segmen-
tation to the original resolution by the use of transposed convolution, a trainable
procedure also known as deconvolution. Skip-connections are introduced in order
to forward information from the contracting layers to the respective expanding
layers. SegNet [44], an architecture from the same time period, has a similar
encoder/decoder structure as U-Net. The difference between the two architectures
is that SegNet only copies over the max-pool indices in the skip connections instead
of forwarding the entire feature layer, thus decreasing the memory requirements
of the network.

R-CNN [45], and the subsequent improvements Fast R-CNN [46] and Faster R-
CNN [47], made great strides in image classification and localization tasks in 2014
and 2015. The crux of their success lies in the region proposal network (RPN), a
parallel network which is responsible for identifying regions of interest (RoIs) in the
convolved feature maps. These RoIs are transformed to consistent dimensions by a
custom pooling method called RoIPool, or alternatively RoIWarp, and subsequently
classified and localized with a fully connected feedforward network. Mask R-
CNN [48], published by the Facebook AI research group in 2017, sought to expand
Faster R-CNN in order to predict segmentation as well. Mask R-CNN replaces
RoIPool with RoIAlign, a region of interest pooling method which preserves a
one-to-one pixel mapping between the original feature map and the extracted
region of interest. The output of the pooling operation is forwarded to a parallel
FCNN branch in order to perform pixel-wise segmentation. This segmentation

Chapter 3: Modeling 55

branch predicts independent masks without inter-class competition, and reuses
the work performed by the classification branch in order to select which mask to
apply to a given region.

Capsule networks has become a topic of large interest in the research com-
munity as of late. First introduced in a paper [49] by Sabour et al., it has since
been applied to segmentation tasks as well. One such adaption is the SegCaps
architecture [50]. The main idea behind capsule networks is to output more data
from each neuron, effectively allowing the network to make more informed deci-
sions with this new context. Instead of only storing a single scalar in each neuron
they store a contextual vector instead. Each vector encodes information about
the spatial orientation, magnitude, prevalence, and other attributes related to the
extracted features. These capsule vectors are dynamically routed to the capsules in
the next layer based on vector similarity.

3.2.5 The U-Net model architecture

We have chosen the U-Net architecture for segmenting roof structures and we
will present numerical experiments in Chapter 5. The U-Net model has already
been briefly described in the previous section and the architecture has been illus-
trated in Figure 3.1, but we will provide a more detailed summary of the U-Net
architecture here. An alternative visual representation of the U-Net architecture is
provided in Figure 3.8. The U-Net architecture consists of four sequential “encoder
modules”, each module applying a set number of convolutional filters followed
by the application of the ReLU activation function. The number of trained con-
volutional filters in each encoder module is respectively: 64, 128, 256, and 512.
Each module ends with a downsampling operation in form of max-pooling of size
2. Since our input images have resolution 256× 256, we end up with inputs of
size 16× 16 to the “bottleneck convolution module” where 1024 convolutional
filters are trained. The bottleneck convolution module is placed at the bottom of
the U-shape in Figure 3.8. Each decoder block utilizes batch normalization and
max-pooling dropout. The “decoder modules” apply transposed convolutions in
order to upsample the resolution by a factor of two, the number of filters being
equivalent to their respective “mirror encoders”, i.e. the encoder modules handling
inputs with identical resolutions. Four such modules are applied in order to yield a
final output resolution of size 256× 256, the original input resolution. The out-
puts of the mirror encoder modules are concatenated to the input to the decoder
modules in order to aid the upsampling procedure. Finally, a sigmoid convolution
with filter size 1 is applied in order to produce the final segmentation probabilities.
This model has been implemented using the declarative Keras API in Tensorflow
v2.1, yielding a final network with 7025 329 trainable parameters.

56 Martinussen: Roof Geometry Inference using Remote Sensing Data

6464

I

128 128

I/2

256 256

I/4

512 512

I/8

1024 1024

I/16

512

I/8

||

512 512

I/8

256

I/4

||

256 256

I/4
128

I/2

||

128 128

I/2

64

I

||

64 64

I

I

Sigmoid

Figure 3.8: U-Net model architecture. The vertical axis denotes the resolution
of the features, resulting in the U-shape of U-Net. Figure has been generated by
modifying a tikz example provided in the MIT licenced PlotNeuralNet library
available at this URL: https://github.com/HarisIqbal88/PlotNeuralNet.

https://github.com/HarisIqbal88/PlotNeuralNet

Chapter 3: Modeling 57

3.3 Surface Normal Vector Prediction

The previous section described the deep learning approach for predicting semantic
segmentation masks. In our specific case, these semantic segmentation masks
denote which pixels contain roof structures, and which do not. Such semantic seg-
mentation masks are not sufficient for achieving our stated goal of reconstructing
three-dimensional roof surface geometries from remote sensing data. In order to
achieve this goal we must produce instance segmentation masks instead, that is,
not only determining if a given pixel contains a roof structure, but also determining
which specific flat roof surface the pixel is part of.

In the upcoming Chapter 4 - “Post-processing”, we will present a procedure
for partitioning semantic segmentation maps into instance segmentation maps
by clustering normal vectors. Subsequent post-processing steps can be applied in
order to convert these instance segmentation maps into three-dimensional vector
polygons representing flat roof surfaces. This section will describe the prediction of
these surface normal vector rasters which are used by these post-processing steps.
Since this is a relatively novel approach to producing instance segmentation masks,
there exists relatively little existing work in the academic literature which is directly
applicable. We will, however, present some existing work which is tangentially
relevant to our task at hand in Section 3.3.1. A U-Net derived CNN architecture
for predicting rasterized surface normal vectors is presented in Section 3.3.2.

3.3.1 Related work

ESRI, in cooperation with Miami-Dade County and Nvidia, constructed a machine
learning pipeline for the reconstruction of three-dimensional building models
from aerial LiDAR data [51]. The project used human-annotated building outline
polygons in conjunction with a roof type classification label assigned to each
polygon; either flat, gable, hip, shed, dome, vault, or mansard. This was a costly
procedure as the average human annotator only managed to annotate about 70
roof segments per hour. Another drawback is that the ensuing model is restricted
to reconstructing polygons of one of the seven pre-defined classifications. The
digital surface model (DSM) was normalized by subtracting the digital terrain
model (DTM), producing a raster which indicates the height above ground level,
a so-called normalized digital surface model (nDSM). These normalized heights
were converted into an 8-bit unsigned integer raster channel, and two additional
8-bit channels where constructed from the normalized x- and y-gradient from
Sobel–Feldman operator applied upon the nDSM. The resulting three-channel
raster images were fed into a Mask R-CNN architecture with minor modifications,
requiring training for several weeks on 18 200 training samples before reaching
convergence. Proprietary ArcGis geoprocessing tools were finally applied in order
to convert the classified instance masks into three-dimensional vector polygons.

Wang et al. presents a robust and efficient CNN architecture for predicting
surface normals from RGB images in [52], but under the strong assumption of a

58 Martinussen: Roof Geometry Inference using Remote Sensing Data

“Manhattan world”, that is, each normal vector can only point in one of exactly
three directions (the x-, y-, z-direction). This results in a three-class pixelwise
classification model rather than a continuous normal vector regression model.

The inference of surface normal vectors is closely related to the field of depth
estimation. Qi et al. proposes the GeoNet architecture in [53] for predicting joint
depth and surface normal vector rasters, utilizing a least square solution of the sur-
face normal using the predicted depths, and improves upon this normal prediction
with a residual module.

Nesti-net presented in [54] in 2019 is able to predict surface normals from
unstructured LiDAR point cloud data, rather than LiDAR rasters. A local point
cloud representation using multi-scale point statistics (MuPS) is used in order to
pre-process the raster data into a format suitable for CNN architectures.

3.3.2 CNN architecture for predicting surface normal vectors

In Equation (2.1) on Page 32 we defined the normal vector raster, which we will
provide again here in a somewhat simplified form:

Ni, j =

¨

n i, j =
�

ni, j,x , ni, j,y , ni, j,z

�T
, if polygon exists at πB (i, j) ,

0= [0, 0, 0]T , otherwise.

We now intend to construct a model, which we will denote as bfnorm, which targets
this ground truth raster. Denote the parametrization of this model as θ seg, such that
for a given input raster X , the model produces a prediction ÒN according to ÒN :=
bfnorm(X ;θ norm). Additionally, assume that we have a semantic segmentation model,
bfseg, parametrized according to θ seg, which produces a semantic segmentation
map over the same geographic area, bS := bfseg(X ;θ seg).

We intend to construct bfnorm such that it is able to accurately predict Ni, j
whenever there exists a polygon at πB (i, j), but not necessarily otherwise. With
other words, bfnorm will not be required to predict zero-vectors for pixel locations
where no polygons are located. This will drastically reduce the task-complexity
of bfnorm as it is no longer required to semantically segment the input raster in
addition to predicting surface normal vectors. The simplification is made possible
by ignoring the normal vector predictions ÒNi, j whenever bSi, j < TOL, for some model
confidence threshold TOL (we will use TOL = 0.5). This process is described in
much more detail in Section 4.1.

Notice that the following must hold for any ground truth normal vector n i, j by
construction:

n i, j

2 =
Ç

n2
i, j,x + n2

i, j,y + n2
i, j,z ≡ 1,

=⇒ −1≤ ni, j,d ≤ 1, for d ∈ {x , y, z}.
A three-channeled CNN layer which uses the tanh activation function will produce
a raster belonging to the domain [−1,1]H×W×3. An implementation of such a layer
is provided in Code listing 3.1.

Chapter 3: Modeling 59

Code listing 3.1: Keras layer producing raster values of absolute magnitude less
than or equal to 1. Python code using the Tensorflow v2.1 library. The variable
fanal_decoder is the last decoder output of U-Net of size 256× 256× 64.

import tensorflow as tf
...
...
surface_vectors = tf.keras.layers.Conv2D(

filters=3,
kernel_size=(1, 1),
activation=tf.keras.activations.tanh,
name="surface_vectors"

)(final_decoder)

The three-channeled tanh output layer now produces a three-dimensional vector
for each pixel (i, j), thus the model has H ×W ×3 degrees of freedom in its output
layer. We can now utilize the fact that

n i, j

2 ≡ 1 in order to reduce the degrees of
freedom of each predicted vector from three to two. This is performed by “forcing”
the model output into the correct domain by applying a `2-normalization on each
predicted vector. The `2-normalization procedure is formally defined as:

L2Normalize(x) :=
1
‖x‖2

· x = 1
q

x2
1 + x2

2 + x2
3

· x , x ∈ R3

The ensuing `2-normalized model is no longer required to produce vectors of correct
magnitude, only vectors of correct direction. An implementation of L2Normalize in
the form of a Keras modeling layer, and an example application of this Keras layer
to the three-channeled output layer, is provided in Code listing 3.2.

Code listing 3.2: A Keras modeling layer implementing `2-normalization. Python
code using the Tensorflow v2.1 library.

class NormalVectorization(tf.keras.layers.Layer):
def __init__(self, *args, **kwargs):

kwargs["trainable"] = False
kwargs["dynamic"] = False
super(NormalVectorization, self).__init__(*args, **kwargs)

def call(self, inputs: tf.Tensor):
return tf.math.l2_normalize(

x=inputs,
axis=-1,
epsilon=1e-12,

)
...
...
normal_surface_vectors = NormalVectorization(

name="surface_normal_vectors"
)(surface_vectors)

60 Martinussen: Roof Geometry Inference using Remote Sensing Data

Now it remains to construct a loss function for this `2-normalized vector model
bfnorm which does not penalize “bad” behaviour at pixel locations (i, j) where
Ni, j = 0. Start by noticing that since

ÒNi, j

≡ 1 and

Ni, j

2 ∈ {0,1}, we have

N T
i, j
ÒNi, j =

Ni, j

2

ÒNi, j

2 cos (θ) =

¨

cos (θ) , if

Ni, j

2 = 1,

0, if

Ni, j

2 = 0.
,

where N T
i, j
ÒNi, j is the vector dot product between Ni, j and ÒNi, j , and θ is the angle

formed between these two normal vectors. We intend to minimize θ , and thus
indirectly maximize cos(θ), which inspires the cosine similarity loss function defined
by

Lcos

�

ÒNi, j; Ni, j

�

= 1− N T
i, j
ÒNi, j =

¨

1− cos (θ) , if

Ni, j

2 = 1,

1, if

Ni, j

2 = 0.
.

Notice how the cosine similarity loss is constantly equal to 1 whenever

Ni, j

2 = 0,
thus having zero-derivative no matter the input. The behaviour of the normal
vector model bfnorm is therefore completely ignored at such pixel locations during
training, just as intended. When generalizing this loss function for an entire surface
normal raster, we construct the pixel-averaged cosine similarity loss defined as

Lnorm

�

ÒN ; N
�

=
1

HW

H
∑

i=1

W
∑

j=1

1− N T
i, j
ÒNi, j

= 1− 1
HW

H
∑

i=1

W
∑

j=1

Ni, j,xÒNi, j,x + Ni, j,yÒNi, j,y + Ni, j,zÒNi, j,z

(3.4)

Notice that for pixel locations where Ni, j = 0, each component in the predicted
normal vector ÒNi, j becomes multiplied by zero when taking the dot product N T

i, j
ÒNi, j .

These terms are therefore completely disregarded by the loss function, and the
model is allowed to predict completely garbage data for such pixel locations. How
such garbage data is ignored by the loss function is demonstrated in Figure 3.9.

ÒN N

10−4

10−3

10−2

10−1

100

Lnorm

�

ÒN ; N
�

Figure 3.9: Demonstration of pixel-wise cosine similarity loss. The left most tile
shows a normal vector raster prediction, ÒN , while the ground truth is shown in the
middle tile, N . The pixel wise cosine similarity, before being averaged, is illustrated
in the right-most tile.

Chapter 3: Modeling 61

An implementation of this loss function written in python using Tensorflow v2.1 is
provided in Code listing 3.3.

Code listing 3.3: Cosine similarity loss function implemented in Tensorflow v2.1.

@tf.function
def cosine_similarity(

y_true: tf.Tensor,
y_pred: tf.Tensor,

):
dot_products = tf.math.reduce_sum(y_true * y_pred, axis=-1)
similarites = 1 - dot_products
average_similarities = tf.math.reduce_mean(similarites, axis=(-1, -2))
return tf.math.reduce_sum(average_similarities, axis=0)

To summarize, our model for targeting normal vector rasters is constructed
by taking the well-known U-Net semantic segmentation CNN architecture and
replacing the single-channeled sigmoid output layer with a `2-normalized three-
channeled tanh output layer. This CNN architecture is trained by minimizing the
average cosine similarity between the predicted normal vectors and the ground
truth normal vectors, ignoring all pixels where no proper ground truth normal
vectors are defined.

3.4 Optimization

So far we have only mentioned that we must define a loss function to be optimized
for a given neural network, but we have not mentioned exactly how this optimiza-
tion is performed. Deep learning optimization is a huge field of research, and for
the sake of brevity we will glance over a lot of details.

For supervised machine learning we start with a labeled data set, D, containing
n observations:

D = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)}
This data set is then partitioned into three disjunctive subsets, referred to as the
training, validation, and test splits.

Dtrain ∪Dvalidation ∪Dtest = D
Di ∩D j = ;, for i 6= j

A common method is to shuffle the data and then allocate 70% of the original
data as training data and 15% for the two remaining splits. Now, as the name
implies, the training split Dtrain is used for training the neural network, one of the
simplest optimization algorithms being iterated gradient descent. At training step s
the network parametrization θ is updated according to

θ (s+1) = θ (s) −α∇θ
∑

X i ,Yi∈Dtrain

L
�

f̂
�

X i;θ
(s)
�

; Yi

�

,

62 Martinussen: Roof Geometry Inference using Remote Sensing Data

where α is the learning rate. Efficient calculation of the gradient ∇θ for nonlinear
networks of arbitrary connectivity is enabled by a method called backpropaga-
tion [55]. For each training step, the input data is passed forward through the
neural network in order to calculate new predictions. Errors are then subsequently
propagated backwards through the network in order to efficiently calculate the
partial derivatives of the loss function with respect to each parameter θi. The
initial parametrization, θ (0), is not simply filled with zeroes or uniformly random
values as that can cause certain problems. We will initialize the weights with the He
normal method devised by He et al. which draws values from a truncated normal
distribution. More details can be found in the original paper [56].

A common modification to this scheme is the so-called mini-batch gradient
descent algorithm [57]. The training set is yet again partitioned into even smaller
splits called batches, and during training gradient descent is applied iteratively over
each batch. After each epoch, when all batches have been evaluated, the training
split is shuffled and a new batch partition is formed. For sufficiently large batch
sizes the feature distribution of each batch can be considered a good approximation
of the entire sample space, while still having decreased the computational cost of
each training step.

The validation split is used for hyperparameter tuning such as the selection of
the number of training epochs by early stopping [58]. After each epoch, a given
validation loss or metric is evaluated over the validation split. As soon as the
validation split has not improved for a given number of epochs, referred to as
the early stopping patience, the training is stopped and model parametrization
corresponding to the best validation metric is chosen as the final model. Early
stopping is intended to prevent overfitting the model on the training data by using
the validation metric as an indication of generalizability. The test split, in contrast
to the training and validation splits, is completely isolated from the model training
procedure, and is solely kept for a final evaluation of the trained model.

The Adam optimizer published in 2015 [59] has become a popular gradient-
based optimization algorithm for machine learning problems. The algorithm has
relatively low computational and memory requirements, copes well with large
data sets and parameter spaces, and is relatively well-behaved when faced with
noisy and sparse gradients. This is the optimization algorithm we will use for our
model training experiments, the results being presented in Chapter 5.

3.4.1 Multitask learning

So far we have only discussed the construction and optimization of machine
learning models with one single task at hand. Now we pose the question, if we
construct a single model, bfA,B, which is able to produce predictions for two different
tasks A and B simultaneously, how should the model be trained? Assume that
bfA,B is parametrized according to θ A,B, and that the model produces two distinct
predictions bYA and bYB for any given input X , that is, (bYA, bYB) := bfA,B(X ;θ A,B).
Finally, assume that the model targets the ground truths YA and YB. The task of

Chapter 3: Modeling 63

solving two different tasks with a single model parametrization is an problem
instance of multitask learning (MTL) [60].

You might think that any multitask model bfA,B will perform strictly worse
than the combination of two independently trained single-task models bfA and bfB,
especially if the three models have the same parametric complexity:

θ A,B

 =
‖θ A‖ = ‖θ B‖. The multitask model bfA,B does after all solve two different tasks
simultaneously, while the single-task models bfA and bfB can focus on just one
single task at a time. In practice, however, multitask models are often observed
outperforming respective sets of single-task models [60, Section 2]. The reason for
this enhanced predictive power of multitask models is explained by Caruana:

“MTL improves generalization by leveraging the domain-specific
information contained in the training signals of related tasks. It does
this by training tasks in parallel while using a shared representation.
In effect, the training signals for the extra tasks serve as an inductive
bias.” [60, p. 41]

Assume that there exists well-defined loss functions for each task independently,
LA(bYA; YA) and LB(bYB; YB). One way to perform multitask learning is to construct a
linear combination of these two loss functions,

LA,B

�

bYA, bYB; YA, YB

�

= α ·LA(bYA; YA) + (1−α) ·LB(bYB; YB), α ∈ (0,1)

and then finding a suitable value for θ A,B by optimizing LA,B over YA and YB in
conjunction. We will in fact use this approach in order to construct a multitask
model for predicting semantic segmentation masks and surface normal vectors
simultaneously. The results of this will be presented in Section 5.4.

3.5 Raster Normalization

Input data normalization has been found to be of vital importance when training
neural networks, in certain cases reducing predictive errors by several orders of
magnitude and training times by one order of magnitude [61]. How to normalize
input data depends on distribution of the feature space, which will be investigated
here.

3.5.1 RGB rasters

A given RGB pixel is an unsigned 8-bit integer and therefore takes values in a
bounded, integer domain

Ii, j,c ∈ {0,1, . . . , 255}, for c ∈ {r, g, b}.
The distribution of each color channel over the entire coverage area of the Trond-
heim aerial photography data set is shown in Figure 3.10, and aggregate statistics
for each channel are listed in Table 3.1.

64 Martinussen: Roof Geometry Inference using Remote Sensing Data

0 50 100 150 200 250

Channel value

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

F
re
q
u
en
cy

Channel

Red

Green

Blue

Figure 3.10: Distribution density for all three color
channels in the aerial photography data set cover-
ing Trondheim municipality (2017).

Channel Mean [1] SD [1]

Red 101.6 55.0
Green 102.7 48.7
Blue 91.3 37.2

Table 3.1: Aggregate
statistics for each im-
age channel distribu-
tion for the aerial pho-
tography data set cover-
ing Trondheim munici-
pality (2017).

The image channels can be easily normalized to the domain [0, 1] by dividing
by 255 across all three image channels. This is in essence a lossless transformation,
since the normalization function f (x) = x/255 is trivially invertible, and thus no
information is lost by this normalization.

3.5.2 LiDAR rasters

The LiDAR raster E represents elevation data from the respective digital sur-
face model. Elevation measurements are represented by 32-bit, single-precision
floating point numbers, and can theoretically take values in the domain Ei, j ∈
(−3.4× 1038 m,3.4× 108 m). In practice, the measurements are bounded by the
regional extrema, (−433 m, 8848 m) for dry land globally, and (−9 m, 569 m) for
the Trondheim region. The distribution of z channel values for the Trondheim
region is shown in Figure 3.11, and aggregate statistics are listed in Table 3.2.

Chapter 3: Modeling 65

0 100 200 300 400 500

Elevation [m]

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

0.35%

0.40%

F
re
q
u
en

cy
Channel

Elevation

Figure 3.11: Distribution density for eleva-
tion data set covering Trondheim municipal-
ity (2017). Outlier values (0 m,2.74 %) and
(148m, 1.93%) have been cropped.

Channel Mean [m] SD [m]

Elevation 155.4 116.5

Table 3.2: Aggregate
statistics for elevation
data set covering mu-
nicipality of Trond-
heim (2017).

A normalization technique analogue to the RGB min-max scaling for elevation
tile number k, denoted as E(k), would therefore be

Ê(k)i, j =
E(k)i, j − min

t∈TRD
E(t)

max
t∈TRD

E(t) − min
t∈TRD

E(t)
(Global min-max normalization)

=
E(k)i, j + 9 m

578m
,

where TRD is the index set of all tiles belonging to the Trondheim region. The
normalized raster elevation values in Ê(k) are guaranteed to be bounded to the
interval [0,1], as with the RGB raster. In order to evaluate if this will properly
normalize the LiDAR rasters across geographic tiles, we plot the “tile-by-tile”
elevation statistics in Figure 3.12.

Tiles sorted by mean elevation

0

100

200

300

400

500

T
ile

el
ev
at
io
n
[m

]

Mean

Minima

Maxima

10 20 30 40 50 60 70

Range (max−min) [m]

0%

1%

2%

3%

4%

5%

6%

7%

F
re
q
u
en

cy

Mean: 21.55m, SD: 7.40m

Figure 3.12: Elevation value statistics for a tile subset of sample size n= 10000.
The left figure shows the minimum, mean, and maximum elevation, sorted by
increasing mean from left to right. The right figure shows the histogram of the tile
elevation ranges (difference between maximum elevation and minimum elevation
within tile).

66 Martinussen: Roof Geometry Inference using Remote Sensing Data

While the global elevation range is 569m − (−9m) = 578 m, the elevation
range within each respective tile is on average approximately 22 m±8m(SD), that
is, much less than 578 m. Coupled with the fact that the tile elevation means are
somewhat uniformly distributed between 0 m and 200 m, ignoring the right tail, a
global normalization will yield tile elevation values with small standard deviations
and highly variable means. We can therefore conclude that global min-max scaling
is not suitable for the elevation image channel. A proposed solution to this problem
is to scale each tile independently to the domain [0,1], what we will refer to as
“local min-max normalization”.

Ê(k)i, j =
E(k)i, j −min E(k)

max E(k) −min E(k)
(Local min-max normalization)

=
E(k)i, j − β
α− β , where α :=max E(k), β :=min E(k).

The scaling factor α− β is constructed such that the normalized tile minimum
becomes 0 and maximum becomes 1 for all tiles.

Any elevation normalization method must account for the fact that miss-
ing data values are replaced by a pre-defined nodata placeholder value, usually
−3.4× 1038 m. Otherwise a large negative bias is introduced for all tiles with any
missing data. Leaving nodata values unnormalized with such extreme values will
heavily influence the weighted sum calculated by nodes in any neural network,
and must therefore filled in with values from the normalized domain. Filling in
0 values for all nodata indices has been shown to work well in most cases. The
“nodata-aware” min-max normalization algorithm used for preprocessing elevation
input data is given in Algorithm 2.

Algorithm 2: Nodata-aware local min-max normalization

1 Calculate the valid index set defined by V = {(i, j) : Ei, j 6= nodata}.
2 Calculate α= max

(i, j)∈V
Ei, j and β = min

(i, j)∈V
Ei, j .

3 Construct normalized raster defined by

Êi, j =

¨ Ei, j−β
α−β , if (i, j) ∈ V,

0, otherwise.

One of the core issues with local min-max normalization is that it is essentially
a lossy operation. As each tile is independently scaled, it is no way to accurately
reconstruct the original elevation map in metric units. One way to determine if a
roof-like surface belongs to a proper building or a shed, for instance, is to inspect
its relative height, which becomes impossible without knowing the relative scaling
of each tile with respect to each other. We therefore hypothesize that the variable
scaling imposed by local min-max normalization could impede the performance

Chapter 3: Modeling 67

of models trained on such data. An alternative normalization method is therefore
proposed where the scaling factor α−β is replaced by a predefined constant scaler
γ > 0. The translation β is kept as-is since there is no reason to distinguish between
cadastral plots situated at sea-level and other altitudes when it comes to building
outline detection. This “metric normalization” is therefore defined as:

Ê(k)i, j = f
�

E(k)i, j

�

=
E(k)i, j −min E(k)

γ
, γ > 0. (Metric normalization)

Elevation values in the z channel now have a consistent physical interpretation
given in units m/γ across all tiles. The modified metric normalization method is
provided in Algorithm 3.

Algorithm 3: Nodata-aware metric normalization

1 Calculate the valid index set defined by V = {(i, j) : Ei, j 6= nodata}.
2 Calculate β = min

(i, j)∈V
Ei, j and define a global scaler γ > 0.

3 Construct normalized raster defined by

Êi, j,z =

¨ Ei, j−β
γ , if (i, j) ∈ V,

0, otherwise.

Chapter 4

Post-processing

Assume that we have two machine learning models; firstly bfseg which is able to
predict semantic segmentation masks bS, and secondly bfnorm which is able to predict
surface normal rasters ÒN . These two models could conceivably be sub-models of a
single multi-task model, both accepting remote sensing data in the form of aerial
photography and/or LiDAR measurements as illustrated in Figure 4.1.

bf seg

� X ;θ seg

�

bfnorm (X ;θ
norm)

X

RGB, I

LiDAR, E

Segmentation, bS

Surface normals, ÒN

Figure 4.1: Demonstration of unprocessed output from a surface raster machine
learning pipeline. The surface normal vector output, ÒN , is scaled and translated
into the value domain [0, 255]H×W and visualized as an RGB image.

As discussed in Section 2.6 – “Surface Rasterization Algorithm”, the goal is to

69

70 Martinussen: Roof Geometry Inference using Remote Sensing Data

convert these two model predictions belonging to the surface raster domain R back
to the vector polygon domain V by constructing a suitable pseudoinverse mapping
m† : R→ V as illustrated in Figure 4.2.

m†R V

Figure 4.2: Pseudoinverse mapping, m†, mapping from the raster domain to the
vector domain.

More specifically, we will construct a pseudoinverse mapping which accepts two
inputs, a predicted surface normal raster and a semantic segmentation map, and
produces three-dimensional vector polygons, which we will denote as bP,

bP := m†
�

bS,ÒN
�

.

This pseudoinverse mapping should produce three-dimensional polygons which can
be considered close to the ground truth polygons P, where the notion of “closeness”
between bP and P is expressed in a polygon distance metric d : V × V → R. The
main objective of the pseudoinverse mapping is therefore to minimize

d
�

bP,P
�

= d
�

m†
�

bS,ÒN
�

,P
�

.

The model predictions, bS and ÒN , are not perfect, and the pseudoinverse should
therefore be robust relative to the types of errors commonly produced by the
models, bfseg and bfnorm, producing minimal error as defined by the distance metric
d. Constructing a suitable pseudoinverse is therefore not only highly dependent on
the surface raster format itself, but also the specific behaviour of the models used
to produce the raster format. In the evaluation of a pseudoinverse mapping it may
still be beneficial to take the models themselves out of the equation by replacing
the predicted rasters with the ground truth rasters m(P), thus verifying that the
pseudoinverse mapping also minimizes

d
�

m† (m (P)) ,P
�

.

A pseudoinverse mapping which performs badly under this “round-trip metric”
will likely perform badly under the pseudoinverse mapping of model predictions
as well.

Chapter 4: Post-processing 71

In the following sections we will present a pseudoinverse mapping which is
considered highly suitable for producing roof surface polygons, a mapping which
encodes our specific domain knowledge about the general geometric properties
of roof surfaces. Our main idea is to use the predicted surface normal raster in
order to partition the semantic segmentation map into an instance segmentation
map, where the instance segmentation map can subsequently be used in order
to construct enclosing vector polygons for each instance. The three-dimensional
orientation of each polygon can finally be inferred from the predicted surface
normals in conjunction with the original LiDAR data.

Our implementation applies a divide-and-conquer approach to the problem by
dividing the semantic segmentation map into mutually disjunct sub-regions and
partitioning these sub-regions entirely independent of each other. This first-pass
partitioning is described in Section 4.1 – “Connected region labeling”. A second-
pass partitioning is performed by grouping together connected regions which share
the same normal vector orientation. The task of determining which pixels (i, j)
which share the same values for Ni, j is formulated as a clustering problem, the
solution of which will be presented in Section 4.2. A final conversion of instance
segmentation maps to vector polygons will be described in Section 4.3.

Before delving into the details of the implementation, we begin by summarizing
the entire post-processing algorithm in conceptual terms:

Given a predicted segmentation map bS and surface normal raster ÒN :

• Threshold segmentation activations bS according to some tolerance TOL in
order to construct binary segmentation raster eS.

• Identify connected sub-regions of the binary segmentation raster eS, and
sub-divide the following processing independently across these sub-regions.

• Apply a conservative clustering algorithm which does not require the specifi-
cation of the number of clusters a priori.

• Apply a second clustering algorithm which encodes suitable domain knowl-
edge in order to classify the remaining points, producing a labeled partition
of the original binary segmentation raster.

• Construct two-dimensional vector polygons which enclose each instance
region.

• Simplify these vector polygons.
• Reconstruct z-coordinates of each polygon vertex.

72 Martinussen: Roof Geometry Inference using Remote Sensing Data

4.1 Connected region labeling

The predicted segmentation map bS produced by bfseg is a H ×W × 1 raster array
where the values 0 ≤ bSi, j ≤ 1 can be interpreted as the model’s confidence in
there being a roof surface at pixel location (i, j). In order to make an actual binary
prediction for each pixel, we threshold the segmentation map, creating a binary
segmentation map eS defined by

eS := bS > TOL ⇐⇒ eSi, j =

¨

1, if bSi, j > TOL.

0, otherwise.

We will use the most commonly used threshold value, namely TOL = 0.5. The
process of thresholding has been illustrated in Figure 4.3.

bS

> TOL =

eS

Figure 4.3: Thresholding a probabilistic segmentation prediction in order to create
a binary segmentation map. Here TOL= 0.5 has been used.

This binary segmentation map can now be used in order to segment the predicted
surface normal raster as well, producing what we will refer to as segmented surface
normals. The segmented surface normal raster, eN , is constructed by taking the
element-wise product of the predicted surface normal raster and the thresholded
binary segmentation map, which we will denote as eS �ÒN and formally define as

eN := eS �ÒN ⇐⇒ eNi, j,d = eSi, j ·ÒNi, j,d , for d ∈ {x , y, z}.
The segmentation of the predicted surface normal raster is illustrated in Figure 4.4.

ÒN eS eN

� =

Figure 4.4: Segmentation of a predicted surface normal raster using a binary
segmentation map.

Chapter 4: Post-processing 73

These segmented normals eN are intended to be used in order to partition the
semantic segmentation map eS into an instance segmentation map, where each
instance is considered to be a two-dimensionally projected roof surface polygon.
A simple first-pass partitioning of the segmentation map into regions which are
completely connected can be performed, with other words the partitioning into
entire roofs rather than single roof surfaces. The identification of connected sub-
regions can be performed by a so-called connected region labeling algorithm as
described in [62, 63]1.

AB

C
D

AB

C
D

Figure 4.5: The result of skimage.measure.label applied on a binary segmen-
tation map. Four separate sub-regions, marked as A, B, C , and D, have been
identified.

A dynamic programming programming approach can be subsequently applied in
order to independently subdivide these roof partitions into surface partitions. The
example presented in Figure 4.5 shows that there exists four separate connected
regions (A, B, C , and D) in the predicted semantic segmentation raster. Provided
that the predicted segmentation map is sufficiently correct, we can conclude that
any polygon belonging to any one of these regions will not belong to any other
region. We can therefore formulate the partitioning of each region as entirely
independent tasks, the solution of which will be presented in the next section.

1A connected region labeling algorithm is implemented by the skimage python package in
skimage.measure.label

74 Martinussen: Roof Geometry Inference using Remote Sensing Data

4.2 Instance Clustering

We now intend to subdivide each roof partition into constituent surface parti-
tions, creating an instance segmentation map as a result. Each partition should be
constructed such that all pixels (i, j) in a given surface partition share the same
normal vector orientation, Ni, j . A complicating factor is that the predicted surface
normal raster eN is not perfect, that is, the predicted normal vectors eNi, j are spatially
distributed across some neighbourhood around the ground truth surface normal
vector Ni, j . The distribution of the cosine similarity between the predicted normal
vectors and the ground truth normal vectors, 1− eNi, j · Ni, j , for one of the trained
surface normal model bfnorm is shown in Figure 4.6.

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008

Cosine similarity

103

104

105

106

L
og

fr
eq

u
en

cy

Mean = 0.000398

Median = 0.000030

IQR = [0.000008, 0.000088]

Figure 4.6: The distribution of the cosine similarities between the ground truth
normal vectors and the predicted normal vectors of a surface normal model over
9537 test tiles.

0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

Azimuth

Figure 4.7: Ground truth la-
beling of predicted normal vec-
tors. Azimuth = 0° indicates
true north.

Denote the index set of a given roof partition r
as Ir = {(ir,1, jr,1), (ir,2, jr,2), . . .}. We will specifi-
cally focus on roof partition r = D as labeled in
Figure 4.5 in the following example plots. Start
by constructing a set of surface normal vector ob-
servations defined over the given roof partition,
Nr := {eNi, j | (i, j) ∈ Ir}. The spatial distribution of
ND is shown in Figure 4.7, each normal vector be-
ing represented as a scatter point on the projected
x y-plane. Now, the region defined by roof partition
D contains four ground truth roof surface polygons,
and each scatter point eNi, j has been color annotated
according to which polygon that overlaps at pixel
location (i, j). Each ground truth roof surface poly-
gon has an associated ground truth normal vector
as well, and these are annotated as black crosses

Chapter 4: Post-processing 75

(×) in Figure 4.7. The task is now to assign a cluster label l ∈ {1, 2, . . . , C} to each
observation in ND such that those observations which share the same label also
can be considered to share the same normal vector. In our example, where the
ground truth is available, we know that the number of clusters C should ideally be
equal to four, i.e. the number of unique roof surfaces. In practice, however, it is
important to notice that the number of roof surfaces in a given roof partition is not
known a priori, and C therefore needs to be inferred from the spatial distribution
of ND. It is therefore important that the clustering algorithm we chose does not
require C to be specified.

Our clustering procedure utilizes two different clustering algorithms applied in
succession, first density-based spatial clustering of applications with noise (DBSCAN)
and then k-nearest neighbours (k-NN). DBSCAN has the benefit of being able to
infer C from ND, a value which can then be passed forwards to the k-NN clustering
algorithm which requires it a priori. Additionally, DBSCAN has the ability to label
observations as “noise” whenever the cluster they belong to is not entirely clear.
This allows us to use the conservative non-noisy labels produced by DBSCAN to
estimate the ground truth normal vectors, while applying k-NN (which encodes a
greater degree of our domain knowledge about roof surfaces) on the remaining
noisy observations. The application of these two clustering algorithms will now be
explained in more detail.

4.2.1 DBSCAN

0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

Azimuth

Figure 4.8: DBSCAN labeling
of predicted normal vectors.
ε = 2.5× 10−6, MinPts = 25,
d = cosine distance.

DBSCAN is a non-parametric clustering algorithm
(that is C does not need to be specified) first pro-
posed by Ester et al. in 1996[64]. Consider the
normal vector observations eNi, j ∈ Nr to be clus-
tered, and define some distance metric between
two normal vectors N1 and N2, d(N1, N2). The dis-
tance metric could be chosen to be the cosine dis-
tance between two normalized vectors of length 1:
d(N1, N2) = 1− N1 · N2

2. Given parameters ε > 0
and MinPts ∈ Z+, DBSCAN annotates each normal
vector in eN ∈ Nr as either a core point, reachable
point, or as a noisy outlier. A normal vector eN ∈Nr
is considered to be a core point if there exists at
least MinPts normal vectors eN ∗ ∈ (Nr \ eN) where
d(eN , eN ∗)< ε. DBSCAN then creates a graph of all
identified core points and draws edges between core
point nodes eN1 and eN2 whenever d(eN1, eN2)< ε. All
connected components of this core point neighbour-

2Using cosine distance as the distance metric during clustering is especially suitable when bfnorm is
trained by using cosine distance as the loss function. The same can be said of other cluster distance
metric / model loss combinations.

76 Martinussen: Roof Geometry Inference using Remote Sensing Data

hood graph are considered to be clusters, thus automatically inferring the total
number of clusters C . Any non-core normal vector is assigned to a nearby cluster as
long as it is within ε distance of a normal vector within that cluster. All remaining
normal vectors are finally considered noisy outliers.

Figure 4.8 on the previous page shows the result of DBSCAN when applied on
the predicted surface normal vectors ND belonging to roof partition D as annotated
in Figure 4.5 (Page 73). The parametrization of DBSCAN is set as ε = 2.5× 10−6

and MinPts = 25, where the cosine distance metric has been used. Of the non-
noisy labels produced by DBSCAN in Figure 4.8, 99.8 % are labeled correctly. The
remaining noisy normal vectors are shown as gray scatter points.

Figure 4.9 shows the result of applying DBSCAN on all four roof partitions (A,
B, C , and D as presented in Figure 4.5). The normal vectors labeled as noise by
DBSCAN, marked as black pixels, are frequently situated along the border between
roof surfaces. Protruding roof segments have also been observed as a common
location for noisy normal vectors.

eN DBSCAN(eN)

DBSCAN

Identified noise

Figure 4.9: Application of DBSCAN on predicted surface normal raster. Nor-
mal vectors considered noise by DBSCAN have been colored in black. DBSCAN
parameters: ε = 2.5× 10−6, MinPts= 25, d = cosine distance.

The labeling of the remaining noisy normal vectors will now be discussed.

4.2.2 k-nearest neighbour noise classification 0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

Azimuth

Figure 4.10: k-NN labeling of
remaining DBSCAN noise.
k = 1 with `2 distance norm.

Denote the index set of the DBSCAN-identified noise
for roof partition r as I∗r . The set of noisy normal
vectors N ∗r = {eNi, j | (i, j) ∈ I∗r } is now considered
insufficient for further clustering, as they are likely
insufficiently close to their ground truth normal
vectors in addition to being spuriously distributed
in the normal vector feature space. Until now, the
geographic location [x , y]T = πB (i, j) correspond-
ing to each predicted normal vector eNi, j has been
entirely ignored. The idea is to use this spatial in-
formation in order to assign labels to the remaining

Chapter 4: Post-processing 77

noise, while utilizing the clustering already performed by DBSCAN. The k-nearest
neighbours (k-NN) algorithm [65] is a conceptually simple algorithm highly suit-
able for this task. Start by constructing two geographic location sets, first one
for the noisy coordinates R∗b := {πB (i, j) | (i, j) ∈ I∗r }, and a second one for the
successfully labeled coordinates Rb := {πB (i, j) | (i, j) ∈ (Ir \ I∗r)}. For each
geographic point marked as noise by DBSCAN, p∗ ∈R∗b, find the k nearest neigh-
bours {p1, p2, . . . , pk} in the labeled set Rb according to some distance metric. The
label assigned to p∗ is then determined by a plurality vote of the labels of the
neighbours {p1, p2, . . . , pk}. We will specifically set k = 1 and use the Euclidean
norm (`2-norm), that is, assigning the label of the geographically closest DBSCAN
label, the result of which is presented in Figure 4.10. Of the noisy normal vectors
labeled by k-NN in Figure 4.10, 76.9 % end up being labeled correctly. This yields
a final clustering accuracy of roof partition D of 97.9 %. We should note that Fig-
ure 4.10 does not plot the features actually used by the k-NN clustering method,
as it shows eNi, j and not πB (i, j). The figure is intended to be compared against
Figure 4.8. The geographic features of the k-NN processed noise labels are shown
in Figure 4.11.

DBSCAN(eN) KNN(DBSCAN(eN))

k-NN
k = 1

Classified noise

Figure 4.11: Application of k-NN on DBSCAN-identified noise, with k = 1 and
using the `2-norm.

As shown in Figure 4.11 the k-NN clustering produces relative straight decision
boundaries, which is important for roof surfaces. The result is a rasterized instance
segmentation map which must be processed further in order to convert each
instance to a vectorized polygon. This is the topic of the upcoming section.

78 Martinussen: Roof Geometry Inference using Remote Sensing Data

4.3 Vectorization

The clustering described in the previous section results in a rasterized instance
segmentation map which we will denote as bL. Denote the total number of identified
clusters across all roof partitions as C such that bL ∈ {0,1,2, . . . , C}H×W×1. Here
bLi, j = 0 indicates that the pixel location (i, j) does not contain any surface polygon,
i.e. bSi, j = 0. This section will describe how to convert this two-dimensional instance
segmentation raster map into a set of vectorized three-dimensional polygons bP.

4.3.1 Two-dimensional polygonization

Connected region labeling can be used in order to group together all neighbouring
pixels with equal values for bLi, j as previously described in Section 4.1. Each con-
nected sub-region can be converted to polygons by simply drawing line segments
along the pixel borders, resulting in a fine-grained polygon for each instance3.
Denote the resulting set of two-dimensional polygons as bP, an example of which
is shown in Figure 4.12.

bL bP

GDAL

Polygonize

“Manhattan edges”

Figure 4.12: The result of applying GDALPolygonize on the clustered instance
map bL.

As can be seen in Figure 4.12, the resulting polygons show a high degree of
“rasterization”, having edges which are exclusively oriented along the east-west or
north-south axis (“Manhattan edges” if you will). Depending on the application
of the predicted polygons, it may be preferable to smooth these edges in order to
represent diagonal edges more accurately. The following section will describe such
a simplification.

3This functionality is implemented in GDALPolygonize in the GDAL C-library. The rasterio
python package wraps this GDAL function in rasterio.features.shapes.

Chapter 4: Post-processing 79

4.3.2 Simplification

A vectorized polygon is, as previously described, simply a collection of line segments
which start and end at the same point (a so-called linear ring). The simplification
of vectorized line segments is a well researched area with many proposed algo-
rithms. The most common approach is to select a subsequence of the original linear
ring while minimizing some loss criterion. Methods for preserving areas [66],
distances [67], and angles [68] have been proposed. Visvalingam and Whyatt
proposes an area-based progressive algorithm in [69]4. Another common sim-
plification guideline is the bandwidth criterion, stating that a simplified line is
acceptable as long as it is within an ε-neighbourhood of the original line segment.
The task is then to select the minimum number of vertices which still satisfies this
criterion. The Ramer-Douglas-Peucker (RDP) algorithm[70] is one such method, a
recursive algorithm which is implemented along the following lines:

def RDP([p1, p2, . . . , pn]; ε):
Find p⊥ ∈ [p1, . . . , pn] furthest away from the line between p1 and pn.
If the distance from p⊥ to the line is less than ε, return [p1, pn].
Otherwise, merge result of RDP([p1, . . . , p⊥]) and RDP([p⊥, . . . , pn]).

An illustration of the RDP algorithm is provided in Figure 4.14 on Page 80. We
will use a slightly modified version of RDP implemented in the GEOS library which
preserves certain topological properties of the simplified polygons5, specifically
the number of exterior and interior rings. The result of applying RDP on the
vectorized polygons bP with ε = 0.75 m, producing simplified polygons eP, is shown
in Figure 4.13.

bP eP

RDP
ε = 0.75 m

Simplified edges

Figure 4.13: Polygons before and after RDP has been applied with bandwidth
tolerance ε = 0.75 m.

4The Visvalingam-Whyatt polygon simplification method has been implemented and newly
released on the Python Package Index (PyPI) under the name visvalingamwyatt.

5Documentation for TopologyPreservingSimplifier available at: https://geos.osgeo.org/
doxygen/classgeos_1_1simplify_1_1TopologyPreservingSimplifier.html.
A python wrapper is available in the simplify() function implemented in the shapely library when
parametrized with “preserve_topology=True”: https://shapely.readthedocs.io/en/latest/
manual.html#object.simplify.

https://geos.osgeo.org/doxygen/classgeos_1_1simplify_1_1TopologyPreservingSimplifier.html
https://geos.osgeo.org/doxygen/classgeos_1_1simplify_1_1TopologyPreservingSimplifier.html
https://shapely.readthedocs.io/en/latest/manual.html#object.simplify
https://shapely.readthedocs.io/en/latest/manual.html#object.simplify

80 Martinussen: Roof Geometry Inference using Remote Sensing Data

1

2

3

4

5

p1

p⊥

pn> ε

ε <

> ε

Figure 4.14: Illustration of the Ramer-Douglas-Peucker algorithm. The perpen-
dicular distances between the points p⊥ and the lines formed by the endpoints
are shown in orange. Row 1 shows the original line, while rows 2 to 4 show the
vertices determined to be included since they are further away than ε. Row 5
shows the final resulting line, where the green points indicate the vertices to be
kept, while the red points indicate the discarded vertices. This specific example
has been recreated from Figure 5 in [71].

Chapter 4: Post-processing 81

4.3.3 Three-dimensional reconstruction

As discussed in Section 2.6.2, any planar three-dimensional polygon P can be
decomposed into, and reconstructed from, two sub-components

1. the two-dimensional projection π2D (P), . . .
2. and the parametric equation of the plane β (P) = [β0,βx ,βy].

The first sub-component has now been approximated by the simplified polygons
eP. We must now try to approximate β (P) before we can reconstruct the three-
dimensional polygons. Start by noticing that βx and βy can be expressed in terms
of the normal vector of the plane, n = [nx , ny , nz]

T , by construction

nx
ny
nz

 :=
1

q

β2
x + β2

y + 1

−βx
−βy

1

 ⇐⇒
�

βx
βy

�

= − 1
nz

�

nx
ny

�

.

With other words, if we are able to construct a good estimate for the normal
vector of the plane n (β (P)), we can also estimate βx and βy . Now, each polygon
P ∈ eP has an associated cluster label value l in the instance segmentation map
bL. The corresponding raster index for the given polygon P is then defined as
IP := {(i, j) | bLi, j = l}, and the predicted normal vectors associated to the polygon
P can therefore be retrieved from the predicted surface normal vector raster as
NP := {eNi, j | (i, j) ∈ IP}. We can now construct a predictor for n (β (P)) from
the associated normal vector set NP , for example the normalized vector average,
defined as

n =

nx
ny
nz

 :=

∑

eNi, j∈NP
eNi, j

∑

eNi, j∈NP
eNi, j

2

.

It is also possible to remove the DBSCAN-identified noise from the normal vector
set in order to construct an even more robust estimator, that is, if the polygon
P belongs to roof partition r, we use N ∗P := {eNi, j | (i, j) ∈ (IP \ I∗r)} instead. We
can now construct estimators for βx , β̂x := −nx/nz, and βy , β̂y := −ny/nz. The
remaining task is now to construct an estimator for the final planar parameter
β0. Since the surface normal raster is entirely independent of the elevation of the
plane, we must use the LiDAR input data in order to construct an estimator β̂0
for β0. The idea is to formulate the search for β̂0 such that the LiDAR residuals
(see Section 2.6.5) are minimized. Given a distance metric d, we can construct the
predictor as

β̂0 = argmin
β0∈R

∑

(i, j)∈IP

d
�

Ei, j , β0 + β̂x x + β̂y y
�

,

where [x , y]T := πB (i, j) and Ei, j is the LiDAR measurement at pixel location
(i, j). If we specify the square distance metric d(x , y) = (x − y)2, then we have an
ordinary least squares regression with just one regression parameter. Due to the

82 Martinussen: Roof Geometry Inference using Remote Sensing Data

nature of LiDAR measurement errors, the absolute distance d(x , y) = |x − y| has
been shown to produce more robust estimators for β0.

We can now reconstruct the predicted set of simplified, three-dimensional
polygons:

P3D =
�

(x , y, β̂0 + β̂x x + β̂y y) | for vertex (x , y) representing P
�

, for P ∈ eP.

Chapter 5

Experiments

This section will investigate the inference of flat roof surfaces using the raster data
produced by the pipeline outlined in Chapter 2. The U-Net model architecture
presented in Section 3.2.5 is used for semantic segmentation, while the slightly
modified U-Net architecture presented in Section 3.3.2 will be used for predicting
surface normal vectors. We start by describing the general experimental setup
in Section 5.1. Section 5.2 provides a summary of all the relevant experimental
results of my specialization project [5] related to semantic segmentation of roof
structures. A comparative investigation into the suitability of the different raster
data types (aerial photography and/or LiDAR DSMs) for surface normal predic-
tion is presented in Section 5.3. Lastly, a multitask learning model for predicting
semantic segmentation masks and surface normal vectors simultaneously is tested
in Section 5.4.

5.1 Experimental Setup

5.1.1 Training procedure

Training summary
• 58 559 geographic tiles:

256 px×256 px = 64m×64 m.
• 44 939/ 9670/ 9537

training / validation / test.
• Random shuffling.
• Adam optimizer.
• Validation loss early stopping.

The Trondheim dataset produces 64146geographic
tiles after being processed, each tile including
aerial photography (RGB) data, elevation data
(LiDAR elevation), ground truth semantic roof
segmentation masks and surface normal vector
rasters. This sample space is split into a cus-
tomary 70% / 15% / 15% training–validation–
testing split. The training data is randomly shuf-
fled and subsequently grouped into batches of
size 16 before applying the Adam optimizer. Training is continued until observed
convergence by the use of the loss evaluated over the validation split. The weights
corresponding to the epoch yielding the best validation loss is used as the final
model parametrization.

83

84 Martinussen: Roof Geometry Inference using Remote Sensing Data

5.1.2 Software

The majority of the source code written in order to produce and present the results
in this paper is written in Python as it arguably has the best software ecosystem for
both GIS and deep learning workflows. This work would not have been possible if
not for the vast array of high quality open source software available. The Geospatial
Data Abstraction Library (GDAL) [72] has been extensively used in order to process
GIS data, and the python wrappers for GDAL, Rasterio [73] for raster data and
Fiona [74] for vector data, are central building blocks of the data processing
pipeline. The machine learning framework of choice has been the new 2.1 release
of TensorFlow [75], most of the modelling code having been written with the
declarative Keras API.

5.1.3 Hardware and performance

All numerical experiments have been performed by a desktop class computer with
the following relevant technical specifications:

• Processor: AMD Ryzen 9 3900X.
12 cores / 24 threads, 3.8 GHz base clock / 4.6 GHz boost clock.
• Graphics card: MSI GeForce 2070 Super.

8 GB GDDR6 VRAM, 1605 MHz clock speed, 9.062 TFLOPS @ 32-bit.
• Memory: Corsair Vengeance LPX DDR4 3200 MHz 32GB.
• Storage: Intel 660p 1TB M.2 SSD.

Up to 1800 MBs−1 read and write speed.

Model performance
• 218 ms per training step

(batch 16)
=⇒ 14 ms per sample.

• 11 min per training epoch
=⇒≈ 18.3 h per experiment.

• 8 ms per prediction (batch 1)
=⇒ 125 predictions per s.

With a batch size of 16, each training step re-
quires 218 ms of computation, resulting in ap-
proximately 14 ms per geographic tile. When
including the streaming of data from disk, up-
dating weights based 2809 training batches of
size 16, validating the model on 605 additional
validation batches, and executing various Keras
callbacks, each epoch lasts for 11 minutes from
end to end. Most experiments have been trained for 100 epochs, hence requir-
ing altogether 18 hours and 20 minutes of training. The final models are able to
produce 125 predictions of size 256px× 256 px per second.

Chapter 5: Experiments 85

5.2 Semantic Segmentation

The research questions posed in this thesis is a strict superset of the problems
solved in my previous specialization project [5], a project which solely focuses on
the semantic segmentation of roof structures from remote sensing data. We will
therefore provide a brief summary of the conclusions made in [5] before continuing
onto the experiments which are new to this thesis. We refer to the original paper1

for a more detailed presentation and analysis of these results.

• LiDAR raster data is far more suitable for the prediction of semantic roof
segmentation masks than aerial RGB photography.

• A model which consumes both LiDAR and RGB photography has a small, but
not negligible, performance advantage over a model which only uses LiDAR.

• Regularization techniques such as batch normalization and dropout have
been shown to significantly improve the resulting test performance of the
trained networks, while data augmentation had an insignificant effect.

• When it comes to the normalization of LiDAR input rasters, Algorithm 3
– “Nodata-aware metric normalization” was shown to perform slightly
better than Algorithm 2 – “Nodata-aware local min-max normalization”.

• While semantic segmentation models trained with binary cross-entropy loss
(BCEL) showed a purely quantitative advantage on almost all test metrics
compared to alternative losses, the soft variant losses still showed a greater
degree of “common sense”. The soft loss models also showed a greater
propensity for ignoring wrong ground truth data during training.

Based on these results, we will train all models with both dropout and batch nor-
malization. LiDAR input raster data will be normalized according to Algorithm 3
– “Nodata-aware metric normalization” with parametrization γ = 30. The se-
mantic segmentation loss function that will be used is the soft Jaccard loss as
presented in Equation (3.2).

1The original specialization project PDF file can be downloaded from: https://jakobgm.com/
pdf/ntnu_reports/9-project-thesis.pdf

https://jakobgm.com/pdf/ntnu_reports/9-project-thesis.pdf
https://jakobgm.com/pdf/ntnu_reports/9-project-thesis.pdf

86 Martinussen: Roof Geometry Inference using Remote Sensing Data

5.3 Features

The two types of available remote sensing data is LiDAR elevation data and aerial
photography, the latter simply referred to as RGB data from now on. We will
investigate to what degree these features are useful for predicting surface normal
rasters. Of special interest is how these two feature types compare to each other
when it comes to the predictive accuracy. Both feature types provide birds-view
perspectives, and we hypothesize that models based on LiDAR will fare better
than RGB models due to the importance of the spatial information when it comes
to surface normals. A model using both features types combined will also be
constructed and trained, and we will compare the accuracy of this model to the
two models using the respective feature types in isolation.

5.3.1 LiDAR data

We start by training a model based solely on LiDAR data normalized according to
Algorithm 3. The training procedure is presented in Figure 5.1.

0 20 40 60 80 100
Epoch

13.1350

13.1375

13.1400

13.1425

13.1450

13.1475

13.1500

Lo
ss

LiDAR
Loss: 13.1353

Validation
Train

Figure 5.1: Training procedure of LiDAR-only U-Net-derived architecture for
predicting surface normals over 100 training epochs. The training epochs are
given along the horizontal axis, while the end-of-epoch cosine similarity loss
evaluations are given along the vertical axis. Validation split loss is shown as a
blue solid line, while the training split loss is shown as a blue dashed line. The
epoch yielding the best validation loss is annotated as a solid blue circle, in this
case the 99th epoch with a validation loss of 13.1353.

Notice how Figure 5.1 shows that the model has a validation loss which is con-
sistently lower than the training loss. The tile-averaged, batch-summed cosine
similarity loss used during training is highly data-dependent, portraying great
variance across tiles, and consequently the data splits, as shown in this figure.
We can therefore not necessarily conclude that the model performs better on the
validation split than the training split.

Chapter 5: Experiments 87

0.000 0.001 0.002 0.003 0.004 0.005

Instance-average cosine similarity

103

104

N
u

m
b

er
of

in
st

an
ce

s

Mean = 0.00294

Median = 0.00043

IQR = [0.00014, 0.00146]

Figure 5.2: Distribution of instance-averaged cosine similarities (IACS) of the
LiDAR-only surface normal model over the test split. The instance-average cosine
similarity is given along the horizontal axis (truncated to the domain [0, 0.005]),
while the frequency of each instance-averaged cosine similarity is given along the
log-scaled vertical axis. The mean of the instance-averaged cosine similarities is
shown as an solid orange line, while the median is annotated as a solid green
line. The interquartile range is annotated as dashed green lines. Specific statistical
values are provided in the figure legend.

Figure 5.2 shows the distribution of the instance-averaged cosine similarities
(IACS) over the test split. The instance-averaged cosine similarity for a given
instance is defined as the average cosine similarity between the predicted normal
vectors (over the respective ground truth instance mask) and the ground truth
normal vector of the given surface instance.

The median-performing prediction with respect to the average cosine similarity
is presented in Figure 5.3 as a representative model prediction. That is, half of the
model predictions over the test set perform worse than the prediction presented in
Figure 5.3, while the other half perform better. The result of post-processing the
median test prediction is presented in Figure 5.4.

88 Martinussen: Roof Geometry Inference using Remote Sensing Data

10−4

10−3

10−2

10−1

100

E ÒN N

I S �ÒN L

Figure 5.3: Median test prediction for LiDAR-only normal vector model. Each
image tile represents the following:

E (upper left) – LiDAR DSM raster.
I (lower left) – Aerial RGB photography.
ÒN (upper middle) – Predicted surface normal vector raster, scaled and translated
into value domain [0,255]H×W in order to be visualized as an RGB image.
S �ÒN (lower middle) – Segmented predicted surface normal vector raster using
the ground truth semantic segmentation mask.
N (upper right) – Ground truth surface normal vector raster.
L (lower right) – Pixel-wise cosine similarity.

The aerial RGB photography input, I , has not been used by the model, but is
provided for better visual insight.

Chapter 5: Experiments 89

eN N

DBSCAN
�

eN
�

KNN
�

DBSCAN
�

eN
��

bP eP

Figure 5.4: Post-processing of median test prediction for LiDAR-only model with
respect to the cosine similarity loss component. Each image tile represents the
following:

eN (upper left) – Predicted segmented normal vector raster, using the ground truth
segmentation mask, S �ÒN .
N (upper right) – Ground truth normal vector raster.
DBSCAN

�

eN
�

(middle left) – DBSCAN-clustered normal vectors, black indicating
noisy outliers.
KNN

�

DBSCAN
�

eN
��

(middle right) – Result of applying KNN-clustering to the
DBSCAN-identified noise.
bP (lower left) – Unsimplified predicted polygons.
eP (lower right) – Simplified predicted polygons.

90 Martinussen: Roof Geometry Inference using Remote Sensing Data

5.3.2 RGB data

A model using only RGB data is trained, and the training procedure is summarized
in Figure 5.5 side-by-side the LiDAR-only model for comparison purposes.

0 20 40 60 80 100
Epoch

13.134

13.136

13.138

13.140

13.142

13.144

13.146

13.148

13.150

Lo
ss

LiDAR
Loss: 13.1353

RGB
Loss: 13.1366

Validation
Train

Figure 5.5: Training procedure for surface normal vector models using either
LiDAR or RGB as input. The training epochs are given along the horizontal
axis, while the end-of-epoch cosine similarity loss evaluations are given along
the vertical axis. The LiDAR-only model is shown in blue, while the RGB-only
model is shown in orange. The training split loss is shown with dashed lines, while
the validation split is shown with solid lines. The best validation loss epochs are
annotated with solid circles, with specific validation loss values provided in the
figure legend.

From Figure 5.5 it is immediately obvious that a RGB-only model performs worse
than a LiDAR-only model, as hypothesized. In order to confirm this, the instance-
averaged cosine similarity distribution over the test set is yet again plotted in
Figure 5.6, this time for the RGB-only model instead. As can be seen in Figure 5.6
the mean instance-averaged cosine similarity evaluated over the test set increases
from 0.002 94 to 0.004 02, and the median increases from 0.00043 to 0.00078.
The RGB-only surface normal vector model can therefore be concluded to be strictly
worse than the LiDAR-only equivalent model.

Yet again we plot the median test prediction of the RGB-only model in Fig-
ure 5.7 as a representative prediction. The result of post-processing the median
test prediction is presented in Figure 5.8.

Chapter 5: Experiments 91

0.000 0.001 0.002 0.003 0.004 0.005

Instance-average cosine similarity

103

104
N

u
m

b
er

of
in

st
an

ce
s

Mean = 0.00402

Median = 0.00078

IQR = [0.00023, 0.00273]

Figure 5.6: Distribution of instance-averaged cosine similarities of the RGB-only
surface normal model over the test split. See Figure 5.2 for detailed figure de-
scription.

10−4

10−3

10−2

10−1

100

E ÒN N

I S �ÒN L

Figure 5.7: Median test prediction for RGB-only normal vector model. The LiDAR
DSM input, E, has not been used by the model, but is provided for better visual
insight. See Figure 5.3 for detailed figure description.

92 Martinussen: Roof Geometry Inference using Remote Sensing Data

eN N

DBSCAN
�

eN
�

KNN
�

DBSCAN
�

eN
��

bP eP

Figure 5.8: Post-processing of median test prediction for RGB-only model with
respect to the cosine similarity loss component. See Figure 5.4 for a detailed
figure description.

Chapter 5: Experiments 93

5.3.3 Combined data

We now construct a model which uses both LiDAR and RGB data in combination in
order to produce predictions. The training procedure of the combined data model
is shown in Figure 5.9, and the training procedures of the two single-input models
have been included for comparison.

0 20 40 60 80 100
Epoch

13.134

13.136

13.138

13.140

13.142

13.144

13.146

13.148

13.150

Lo
ss

RGB
Loss: 13.1366

LiDAR
Loss: 13.1353

LiDAR+RGB
Loss: 13.1352

Validation
Train

Figure 5.9: Training procedure for surface normal vector models using LiDAR
and/or RGB as input. The training epochs are given along the horizontal axis,
while the end-of-epoch cosine similarity loss evaluations are given along the
vertical axis. The LiDAR-only model is shown in blue, the RGB-only model in
orange, and finally the combined input model in green. The training split loss is
shown with dashed lines, while the validation split is shown with solid lines. The
best validation loss epochs are annotated with solid circles, with specific validation
loss values provided in the figure legend.

Figure 5.9 does not show any immediately obvious in predictive performance
between the LiDAR-only model and the combined input model. The distribution
of the instance-averaged cosine similarities over the test set have been plotted in
Figure 5.10.

94 Martinussen: Roof Geometry Inference using Remote Sensing Data

0.000 0.001 0.002 0.003 0.004 0.005

Instance-average cosine similarity

103

104

N
u

m
b

er
of

in
st

an
ce

s

Mean = 0.00265

Median = 0.00044

IQR = [0.00015, 0.00131]

Figure 5.10: Distribution of instance-averaged cosine similarities of the combined
input surface normal model over the test split. See Figure 5.2 for detailed figure
description.

Compared to the LiDAR-only model, the combined input model has decreased
the mean instance-averaged cosine similarity from 0.002 94 to 0.00265, and neg-
ligible increased the median from 0.00043 to 0.00044. With other words, the
combined input model has not increased the predictive performance as much as the
LiDAR-only model improved upon the RGB-only model, but it still has somewhat
better test performance.

The median test prediction of the combined input model is provided in Fig-
ure 5.11. The result of post-processing the median test prediction is presented in
Figure 5.12.

Chapter 5: Experiments 95

10−4

10−3

10−2

10−1

100

E ÒN N

I S �ÒN L

Figure 5.11: Median test prediction for the combined input normal vector model.
See Figure 5.3 for detailed figure description.

96 Martinussen: Roof Geometry Inference using Remote Sensing Data

eN N

DBSCAN
�

eN
�

KNN
�

DBSCAN
�

eN
��

bP eP

Figure 5.12: Post-processing of median test prediction for combined-input model
with respect to the cosine similarity loss component. See Figure 5.4 for a detailed
figure description.

Chapter 5: Experiments 97

5.4 Multitask learning

We now intend to train a multitask learning (MTL) model which simultaneously
predicts semantic roof segmentation masks and surface normal vector rasters.
Both types of remote sensing data, LiDAR and aerial RGB photography, will be
used by the multitask model. The main difficulty lies in constructing a proper loss
function which can be optimized such that both tasks are solved simultaneously to
a satisfactory degree. We will use a conceptually simple multitask loss function,
denoted as LMT, which is a simply a linear combination of the soft Jaccard loss,
LSJL as defined in Equation (3.2), and the pixel-averaged cosine similarity loss,
Lnorm as defined in Equation (3.4),

LMT

�

bS,ÒN ; S, N
�

:= α ·LSJL

�

bS; S
�

+ (1−α) ·Lnorm

�

ÒN ; N
�

= α−
α ·

HW
∑

i=1

bSiSi

HW
∑

i=1

�

bSi + Si − bSiSi

�

+
1−α
HW

H
∑

i=1

W
∑

j=1

�

1− N T
i, j
ÒNi, j

�

.

where 0 ≤ α ≤ 1 determines the weighting of the linear combination. Now, the
main challenge is to select a suitable value for the hyperparameter α; too small and
the semantic segmentation task is neglected in favor of predicting surface normal
vectors during training, and vice versa if α is set too close to 1. In order to find
the most suitable value for α, we train the same model architecture several times
from scratch for 20 epochs, but with different parametrizations of α. The resulting
models are then evaluated in order to determine which α value that should be used
for a full 100 epochs of training. We will specifically perform a hyperparameter
search over the following loss weightings: α ∈ {0,10−8, 10−7, 10−6, 10−5, 10−4,
10−3, 10−2, 10−1, 0.5,1}. Here α = 0 implies using a single-task surface normal
vector architecture, trained solely with the pixel-averaged cosine similarity loss
function, Lnorm. Likewise, α = 1 implies using a single-task semantic segmentation
architecture trained with the soft Jaccard loss function, LSJL. These two single-task
models are included for comparison purposes.

The end-of-epoch value decompositions of the multitask loss function, LMT,
into the two unweighted linear components, LSJL and Lnorm, are presented in Fig-
ures 5.13a and 5.13b. As can be observed from these figures, both loss components
are affected by the specific value of α when it comes to optimization. The general
training and validation loss trends are as expected; the greater the value for α,
the better the network performs at producing semantic roof segmentation masks,
and likewise for small values for α resulting in more accurate surface normal
vector rasters. More interestingly, however, is that there seems to be a “saturation
effect” when α approaches 0 and 1, yielding diminishing performance increases in
the respective task efficiencies. Is it possible to choose a value for α which yields
optimal model performance in both tasks simultaneously?

98 Martinussen: Roof Geometry Inference using Remote Sensing Data

200

400

600

800

1000

1200

So
ft

Ja
cc

ar
d

lo
ss

0 2 4 6 8 10 12 14 16 18 20

Epoch

13.140

13.145

13.150

13.155

13.160

13.165

C
os

in
e

lo
ss

α= 10−8

α= 10−7

α= 10−6

α= 10−5

α= 10−4

α= 10−3

α= 10−2

α= 10−1

α= 0.5

α= 1.0

α= 0.0

(a) End-of-epoch training loss decomposition for different values of α over 20 training epochs.

200

400

600

800

1000

So
ft

Ja
cc

ar
d

lo
ss

0 2 4 6 8 10 12 14 16 18 20

Epoch

13.14

13.15

13.16

13.17

C
os

in
e

lo
ss

α= 10−8

α= 10−7

α= 10−6

α= 10−5

α= 10−4

α= 10−3

α= 10−2

α= 10−1

α= 0.5

α= 1.0

α= 0.0

(b) End-of-epoch validation loss decomposition for different values of α over 20 training epochs.

Figure 5.13: The training epochs are given along the horizontal axis, while the
end-of-epoch loss values are given along the vertical axis. The top plots show the
unweighted soft Jaccard loss, LSJL, while the bottom plots show the unweighted
batch-summed, pixel-averaged cosine similarity loss, Lnorm. The value for α used
during training is indicated by the color of the line as described in the right-hand
color legend. The single-task network losses are shown with dashed lines.

Chapter 5: Experiments 99

Figure 5.14 presents the best end-of-epoch loss component values across all
20 training epochs for all values of α. Both loss components (LSJL and Lnorm) and
both data splits (training and validation) are included.

200

300

400

500

600

700

Ja
cc

ar
d

lo
ss

Train split

200

300

400

500

600

Validation split

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

α

13.1425

13.1450

13.1475

13.1500

13.1525

13.1550

C
os

in
e

lo
ss

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

α

13.1375

13.1400

13.1425

13.1450

13.1475

13.1500

Figure 5.14: Best loss component value across all 20 training epochs for each
value of α. The value of α is provided along the log-scaled horizontal axis, while
the best loss values are provided along the vertical axis. The top row shows the soft
Jaccard loss, LSJL, while the bottom row shows the pixel-averages cosine similarity
loss, Lnorm. The left column is evaluated on the train split, while the right column
is evaluated on the validation split.

We can conclude from Figure 5.14 that α= 10−5 is the obvious choice since the
resulting model uncompromisingly performs at least as well as all other models
on both tasks simultaneously. For this reason, going forwards, we will exclusively
parametrize the multitask loss function with α= 10−5.

100 Martinussen: Roof Geometry Inference using Remote Sensing Data

We now train a multitask model for 100 full epochs, using the multitask loss function
LMT with α= 10−5. The full training procedure is provided in Figure 5.15.

0 20 40 60 80 100
Epoch

13.136

13.138

13.140

13.142

13.144

13.146

13.148

13.150

Lo
ss

Multitask
Loss: 13.1363

Validation
Train

Figure 5.15: Training procedure of combined input, U-Net-derived multitask
architecture (α= 10−5) for predicting semantic segmentation masks and surface
normals over 100 training epochs. The training epochs are given along the
horizontal axis, while the end-of-epoch multitask loss evaluations, LMT, are given
along the vertical axis. The validation split loss is shown as a blue solid line, while
the training split loss is shown as a blue dashed line. The epoch yielding the best
validation loss is annotated as a solid blue circle, in this case a validation loss of
13.1363.

As can be seen in Figure 5.15, the validation loss shows a large degree of variance
from epoch to epoch. In order to investigate the behaviour of the loss function
over each training epoch, we plot the decomposition of LMT into LSJL and Lnorm in
Figure 5.16. For comparison purposes we include the losses of the respective single-
task architectures as well. As can be seen in Figure 5.16, the multitask network
portrays a greater degree of instability in its validation loss compared to the
respective single-task networks, especially for the pixel-averaged cosine similarity
loss. Although the multitask network portrays a greater degree of instability during
training, it still manages to converge to a general performance level which is
comparable to the respective single-task models. For the semantic segmentation
task, specifically, the multitask network even performs better than the respective
single-task roof segmentation model. It can also be observed that the semantic
segmentation loss generally converges slower than the surface normal vector loss.

The end-of-epoch model parametrization which yields the best loss value when
evaluated over the validation split is chosen as the final model parametrization.
Figure 5.17 shows the distribution of the instance-averaged cosine similarities
(IACS) over the test split. Compared to the single-task surface normal vector model,
the multitask model has increased the mean test IACS from 0.002 65 to 0.002 84,
while negligible decreased the median from 0.000 43 to 0.000 42. Based on these
results, we consider the multitask model to be approximately equally accurate as
the respective single-task model.

Chapter 5: Experiments 101

0 20 40 60 80 100
Epoch

13.134

13.136

13.138

13.140

13.142

13.144

13.146

13.148

13.150
Su

rf
ac

e
no

rm
al

lo
ss

Multitask
Surface normal loss: 13.1352

Single-task
Surface normal loss: 13.1352

Validation
Train

(a) Batch-summed, pixel-averaged cosine similarity loss component, Lnorm, for both the multitask
network (α= 10−5) and single-task surface normal vector network.

0 20 40 60 80 100
Epoch

100

125

150

175

200

225

250

275

300

Io
U

lo
ss

Multitask
IoU loss: 126.2123

Single-task
IoU loss: 134.7654

Validation
Train

(b) Soft Jaccard loss component, LSJL, for both the multitask network (α= 10−5) and single-task
semantic roof surface segmentation network.

Figure 5.16: End-of-epoch loss components of multitask network compared to
respective single-task losses. The multitask network losses are annotated in blue,
while the respective single-task network losses are annotated in orange. Training
losses are shown as dashed lines, while validation losses are shown as solid lines.
The best validation losses across all 100 epochs are annotated as solid circles.

102 Martinussen: Roof Geometry Inference using Remote Sensing Data

0.000 0.001 0.002 0.003 0.004 0.005

Instance-average cosine similarity

103

104

N
u

m
b

er
of

in
st

an
ce

s

Mean = 0.00284

Median = 0.00042

IQR = [0.00014, 0.00139]

Figure 5.17: Distribution of instance-averaged cosine similarities of the surface
normal vector rasters produced by the multitask network over the test split. See
Figure 5.2 for detailed figure description.

Now that we have concluded that the multitask model performs accurately on
the task of predicting surface normal vector rasters, we investigate the predictive
accuracy of the multitask model when it comes to semantic roof segmentation.
The distribution of the test IoU evaluations for the multitask model is provided in
Figure 5.18b, while the test IoU distribution of a respective single-task semantic
roof segmentation model is provided in Figure 5.18a for comparison purposes. As
can be seen in Figure 5.18, the multitask model increases the mean test IoU from
0.934 to 0.939, and the median test IoU from 0.908 to 0.914, compared to the
single-task model. The number of test performance outliers, that is IoU ≤ 0.8, also
decreases from 6 % to 5 %. With other words, we can conclude that a multitask
model which produces both semantic roof surface segmentation maps and surface
normal vector rasters simultaneously ends up performing better than the set of
respective single-task models.

While it has been established that the multitask model outperforms the single-
task segmentation model in aggregate, it is still of interest to compare these two
models on a more case-by-case basis. The two models are compared tile-by-tile
in the IoU scatter plot presented in Figure 5.19. If the models would have been
indistinguishable w.r.t. predictive performance, then the scatter points would be
entirely situated along the diagonal black lines in Figure 5.19, which is clearly not
the case here due to the multitask model outperforming the single-task model.
While the multitask model is on average better than the single-task model, single-
task still outperforms multitask in about 40.4 % of the test cases. This may be
partly caused by the randomness introduced into the training procedure, and thus
the final model parametrization.

Chapter 5: Experiments 103

≤ 0.8 0.85 0.90 0.95 1.00
Test IoU

0

100

200

300

400

500

600

N
um

be
r

of
til

es

IoU≤ 0.8
(6%)

Median = 0.934

IQR = [0.90, 0.955]
Mean = 0.908

(a) Test IoU distribution for single-task semantic roof surface segmentation model.

≤ 0.8 0.85 0.90 0.95 1.00
Test IoU

0

100

200

300

400

500

600

N
um

be
r

of
til

es

IoU≤ 0.8
(5%)

Median = 0.939

IQR = [0.91, 0.957]
Mean = 0.914

(b) Test IoU distribution for semantic segmentation masks produced by multitask learning model.

Figure 5.18: Distribution of IoU evaluations of the combined-input models (single-
task and multitask) over tiles from the test set. The left tail of the distribution
(IoU ≤ 0.8) of the IoU data has been cropped and included into the left-most bin
colored in red. The interquartile range (IQR) is annotated in orange and the mean
in green.

104 Martinussen: Roof Geometry Inference using Remote Sensing Data

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Si
ng

le
-t

as
k

66.2%
33.8%

IoU= 0.917

IoU
=

0.926

Train split

0.0 0.2 0.4 0.6 0.8 1.0

59.6%
40.4%

IoU= 0.908

IoU
=

0.914

Test split

Multitask

Figure 5.19: Scatter plot showing the correlation between the IoU evaluation
metric performance of two surface segmentation models, single-task vs. multi-
task. Each blue scatter point (x i , yi) corresponds to a given tile, i, where the x-
coordinate is the IoU metric of the multitask model prediction and the y-coordinate
is the IoU metric of the single-task model prediction for that given tile. Tiles be-
longing to the train split are shown in the left half, while the tiles belonging to the
test split are shown in the right. The horizontal dashed lines in orange indicate
the mean IoU metric of the single-task model for the respective splits, while the
vertical dashed lines in green indicate the mean IoU for the multitask model. Diag-
onal black lines indicates x = y , and the arrows with accompanying percentages
indicate the fraction of points above and below this line. Scatter points located
above the black diagonal line indicate tiles where the single-task model performs
better than the multitask model, while scatter points located below the diagonal
represent tiles where the multitask model performs better than the single-task
model.

Chapter 5: Experiments 105

The median test prediction for the multitask model with respect to the cosine
similarity loss component is presented in Figure 5.20. The predicted segmentation
mask is used in order to segment the predicted surface normals instead of the
ground truth segmentation mask as in earlier prediction plots.

10−4

10−3

10−2

10−1

100

E ÒN N

I
eN L

Figure 5.20: Median test prediction for multitask model with respect to the cosine
similarity loss component. Each image tile represents the following:

E (upper left) – LiDAR DSM raster.
I (lower left) – Aerial RGB photography.
ÒN (upper middle) – Predicted surface normal vector raster.
eN (lower middle) – Predicted segmented surface normal vector raster, bS �ÒN .
N (upper right) – Ground truth surface normal vector raster.
L (lower right) – Pixel-wise cosine similarity.

The result of post-processing the median test prediction is presented in Fig-
ure 5.21.

106 Martinussen: Roof Geometry Inference using Remote Sensing Data

eN N

DBSCAN
�

eN
�

KNN
�

DBSCAN
�

eN
��

bP eP

Figure 5.21: Post-processing of median test prediction for multitask model with
respect to the cosine similarity loss component. Each image tile represents the
following:

eN (upper left) – Predicted segmented normal vector raster, bS �ÒN .
N (upper right) – Ground truth normal vector raster.
DBSCAN

�

eN
�

(middle left) – DBSCAN-clustered normal vectors, black indicating
noisy outliers.
KNN

�

DBSCAN
�

eN
��

(middle right) – Result of applying KNN-clustering to the
DBSCAN-identified noise.
bP (lower left) – Unsimplified predicted polygons.
eP (lower right) – Simplified predicted polygons.

Chapter 5: Experiments 107

10−4

10−3

10−2

10−1

100

E ÒN N

I
eN L

Figure 5.22: 95th percentile test prediction (bad prediction outlier) for multitask
model with respect to the cosine similarity loss component. See Figure 5.20 for
detailed figure description.

So far, we have only shown median test predictions with respect to the loss. In
Figures 5.22 and 5.23 we show the 95th percentile test prediction and respective
post-processing in order to demonstrate a negative prediction outlier. A common
trait often observed in negative outliers is the presence of many small roof surfaces
adjacent to each other, which can also be observed in Figure 5.22 with the circular
construction in the lower right quadrant.

Figures 5.24 and 5.25, on the other hand, show the 5th percentile test prediction
in order to demonstrate an exceptionally good surface normal prediction. Such
positive outliers are often dominated by large rectangular surfaces and cleanly
delineated boundaries.

The polygon simplification method, bP → eP, as exemplified in Figures 5.21, 5.23
and 5.25, can be considered as moderately successful, depending on the intended
application of the simplified polygons. Simplification of polygons generally results
in longer, straight edges where the ground truth polygons also have long edges,
but the simplified polygons often wrongly represent protruding roof sections. The
non-simplified polygons usually overlap the ground truth polygons to a greater
degree, but the complexity of the simplified polygons is greatly reduced. This must
be considered as a trade-off which is highly dependent on the given application of
the roof surface polygons.

108 Martinussen: Roof Geometry Inference using Remote Sensing Data

eN N

DBSCAN
�

eN
�

KNN
�

DBSCAN
�

eN
��

bP eP

Figure 5.23: Post-processing of 95th percentile test prediction (bad prediction
outlier) for multitask model with respect to the cosine similarity loss component.
See Figure 5.21 for detailed figure description.

Chapter 5: Experiments 109

10−4

10−3

10−2

10−1

100

E ÒN N

I
eN L

Figure 5.24: 5th percentile test prediction (good prediction outlier) for multitask
model with respect to the cosine similarity loss component. See Figure 5.20 for
detailed figure description.

110 Martinussen: Roof Geometry Inference using Remote Sensing Data

eN N

DBSCAN
�

eN
�

KNN
�

DBSCAN
�

eN
��

bP eP

Figure 5.25: Post-processing of 5th percentile test prediction (good prediction
outlier) for multitask model with respect to the cosine similarity loss component.
See Figure 5.21 for detailed figure description.

Chapter 6

Conclusion and Further Work

We consider there to be two main conclusions to be drawn from the experiments
presented in Chapter 5:

• LiDAR input data is essential in order to predict accurate surface normal
vector rasters, but RGB can be used in addition in order to marginally increase
predictive performance.

• A multitask model which predicts both semantic segmentation masks and
surface normal vectors ends up being more accurate at segmentation than a
respective single-task segmentation model.

We have now presented a complete and novel end-to-end pipeline for predicting
three-dimensional flat roof surface polygons. The pipeline can be considered to
consist of four sequential components:

1. Feature engineering – Construct semantic segmentation masks and surface
normal rasters from ground truth roof surface GIS data.

2. Prediction – Construct and train CNN architecture(s) for the prediction of
semantic segmentation masks and surface normal rasters.

3. Instance clustering – Use predicted surface normal rasters in order to par-
tition the semantic segmentation masks.

4. Vectorization – Reconstruct three-dimensional polygons from original LiDAR
data in combination with the processed instance segmentation masks.

The first component, “feature engineering”, can be considered as the problem
formulation, while the remaining three components are constructed in order
to solve the problem. The three “solution components” are highly modular and
composable, and different implementations can easily replace any of them. We
consider this thesis a proof-of-concept of sorts, establishing a rough sketch of the
types of building blocks required in order to solve the problem at hand. Here are
some examples of how these building blocks can be improved upon in further
work:

111

112 Martinussen: Roof Geometry Inference using Remote Sensing Data

• Implement methods for performing image augmentation during training
when surface normal vector rasters are involved. Any rotation of the input
raster data must be performed on each individual ground truth normal
vector.
• Utilize newer neural network architectures for the prediction and refinement

of semantic segmentation masks and surface normal rasters, e.g. GANs.
• Investigate the application of different activation functions in the surface

normal vector raster output layer. Preferably utilize the fact that ‖n‖ ≡ 1
and nz ≥ 0 to a greater degree.

• Implement other polygon simplification methods which uses more domain-
specific knowledge. Simplified polygons which share a common border before
simplification should preferably still share the same border after simplifica-
tion, for instance.

• Implement metrics for evaluating the accuracy of the “instance clustering”
and “vectorization” components. Use these metrics in order to perform a
proper hyperparameter search for any parameters used by these clustering
and vectorization algorithms. These metrics can also be used in order to
compare different algorithms all together.

As far as we know, the prediction and subsequent post-processing of surface
normal vectors is an entirely new and novel machine learning task, and the appli-
cations of such surface normal vector rasters are manifold. Our specific pipeline
utilizes these normal rasters in order to partition semantic segmentation masks
and reconstruct three-dimensional surface polygons, but there exists several other
real world applications. One such alternative application of (segmented) surface
normal rasters is the calculation of solar irradiance1 for any given location covered
by remote sensing data.

1Solar irradiance [W m−2] is the radiant solar flux received by a surface per unit area.

Bibliography

[1] C. A. Northend, R. C. Honey, and W. E. Evans, “Laser radar (lidar) for
meteorological observations,” Review of Scientific Instruments, vol. 37, no. 4,
pp. 393–400, 1966. DOI: 10.1063/1.1720199. eprint: https://doi.org/
10.1063/1.1720199. [Online]. Available: https://doi.org/10.1063/1.
1720199.

[2] R. O. Dubayah and J. B. Drake, “Lidar Remote Sensing for Forestry,” Journal
of Forestry, vol. 98, no. 6, pp. 44–46, Jun. 2000, ISSN: 0022-1201. DOI:
10.1093/jof/98.6.44. eprint: http://oup.prod.sis.lan/jof/article-
pdf/98/6/44/22558157/jof0044.pdf. [Online]. Available: https://doi.
org/10.1093/jof/98.6.44.

[3] H. Ozdemir, C. Sampson, G. A. de Almeida, and P. Bates, “Evaluating scale
and roughness effects in urban flood modelling using terrestrial lidar data,”
Hydrology and Earth System Sciences, vol. 10, pp. 5903–5942, 2013.

[4] J. Hecht, “Lidar for self-driving cars,” Optics and Photonics News, vol. 29,
no. 1, pp. 26–33, 2018.

[5] J. G. Martinussen, “Building footprint detection using remote sensing data,”
Norwegian University of Science and Technology, 2019. [Online]. Available:
https://jakobgm.com/pdf/ntnu_reports/9-project-thesis.pdf.

[6] Y. H. Liu, “Feature extraction and image recognition with convolutional
neural networks,” in Journal of Physics: Conference Series, IOP Publishing,
vol. 1087, 2018, p. 062 032.

[7] K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in
volumetric images-a graph-theoretic approach,” IEEE transactions on pattern
analysis and machine intelligence, vol. 28, no. 1, pp. 119–134, 2005.

[8] Q. Song, J. Bai, M. K. Garvin, M. Sonka, J. M. Buatti, and X. Wu, “Opti-
mal multiple surface segmentation with shape and context priors,” IEEE
transactions on medical imaging, vol. 32, no. 2, pp. 376–386, 2012.

[9] B. L. Decker, “World geodetic system 1984,” Defense Mapping Agency
Aerospace Center St Louis Afs Mo, Tech. Rep., 1986.

113

https://doi.org/10.1063/1.1720199
https://doi.org/10.1063/1.1720199
https://doi.org/10.1063/1.1720199
https://doi.org/10.1063/1.1720199
https://doi.org/10.1063/1.1720199
https://doi.org/10.1093/jof/98.6.44
http://oup.prod.sis.lan/jof/article-pdf/98/6/44/22558157/jof0044.pdf
http://oup.prod.sis.lan/jof/article-pdf/98/6/44/22558157/jof0044.pdf
https://doi.org/10.1093/jof/98.6.44
https://doi.org/10.1093/jof/98.6.44
https://jakobgm.com/pdf/ntnu_reports/9-project-thesis.pdf

114 Martinussen: Roof Geometry Inference using Remote Sensing Data

[10] W. Commons. (2015). “File:la2-europe-utm-zones.png — wikimedia com-
mons, the free media repository,” [Online]. Available: https://commons.
wikimedia.org/w/index.php?title=File:LA2-Europe-UTM-zones.png&
oldid=146057239 (visited on 11/04/2019).

[11] J. P. Snyder, Map projections–A working manual. US Government Printing
Office, 1987, vol. 1395.

[12] S. kartverk. (May 2018). “Ortofoto trondheim 2017,” [Online]. Available:
https://kartkatalog.geonorge.no/metadata/cd105955-6507-416f-
86d2-6d95c1b74278 (visited on 11/07/2019).

[13] S. kartverk, Produktspesifikasjon for ortofoto i norge, 2003. [Online]. Avail-
able: https://register.geonorge.no/data/documents/produktspes
ifikasjoner_Digitale%20ortofoto_v1_ortofoto-spesifikasjon-v1-
2003_.pdf.

[14] T. AS, Rapport for laserskanning, Comissioned by Trondheim kommune,
2017.

[15] Ø. Holmstad. (2011). “Fil:roof window at evanger.jpg,” [Online]. Available:
https://no.m.wikipedia.org/wiki/Fil:Roof_window_at_Evanger.jpg
(visited on 06/03/2020).

[16] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in
Proceedings of the 1984 ACM SIGMOD international conference on Manage-
ment of data, 1984, pp. 47–57.

[17] R. Szeliski, Computer vision: algorithms and applications. Springer Science
& Business Media, 2010.

[18] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive into Deep Learning, Re-
lease 0.7.0. [Online]. Available: https://d2l.ai (visited on 11/28/2019).

[19] R. C. Gonzalez, Digital image processing, eng, New York, 2018.

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[21] G. Cybenko, “Approximations by superpositions of a sigmoidal function,”
Mathematics of Control, Signals and Systems, vol. 2, pp. 183–192, 1989.

[22] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer feedforward
networks with a nonpolynomial activation function can approximate any
function,” Neural networks, vol. 6, no. 6, pp. 861–867, 1993.

[23] F. Rosenblatt, “The perceptron: A probabilistic model for information storage
and organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386,
1958.

[24] R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H. S.
Seung, “Digital selection and analogue amplification coexist in a cortex-
inspired silicon circuit,” Nature, vol. 405, no. 6789, p. 947, 2000.

https://commons.wikimedia.org/w/index.php?title=File:LA2-Europe-UTM-zones.png&oldid=146057239
https://commons.wikimedia.org/w/index.php?title=File:LA2-Europe-UTM-zones.png&oldid=146057239
https://commons.wikimedia.org/w/index.php?title=File:LA2-Europe-UTM-zones.png&oldid=146057239
https://kartkatalog.geonorge.no/metadata/cd105955-6507-416f-86d2-6d95c1b74278
https://kartkatalog.geonorge.no/metadata/cd105955-6507-416f-86d2-6d95c1b74278
https://register.geonorge.no/data/documents/produktspesifikasjoner_Digitale%20ortofoto_v1_ortofoto-spesifikasjon-v1-2003_.pdf
https://register.geonorge.no/data/documents/produktspesifikasjoner_Digitale%20ortofoto_v1_ortofoto-spesifikasjon-v1-2003_.pdf
https://register.geonorge.no/data/documents/produktspesifikasjoner_Digitale%20ortofoto_v1_ortofoto-spesifikasjon-v1-2003_.pdf
https://no.m.wikipedia.org/wiki/Fil:Roof_window_at_Evanger.jpg
https://d2l.ai
http://www.deeplearningbook.org

Bibliography 115

[25] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[26] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,”
in Proceedings of the fourteenth international conference on artificial intelli-
gence and statistics, 2011, pp. 315–323.

[27] E. Kauderer-Abrams, Quantifying translation-invariance in convolutional
neural networks, 2017. arXiv: 1801.01450 [cs.CV].

[28] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift, 2015. arXiv: 1502.03167 [cs.LG].

[29] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdi-
nov, “Improving neural networks by preventing co-adaptation of feature de-
tectors,” arXiv preprint arXiv:1207.0580, 2012. arXiv: 1207.0580 [cs.NE].

[30] A. Labach, H. Salehinejad, and S. Valaee, “Survey of dropout methods
for deep neural networks,” arXiv preprint arXiv:1904.13310, 2019. arXiv:
1904.13310 [cs.NE].

[31] T. DeVries and G. W. Taylor, “Improved regularization of convolutional
neural networks with cutout,” 2017. arXiv: 1708.04552 [cs.CV].

[32] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep networks
with stochastic depth,” in Computer Vision – ECCV 2016, B. Leibe, J. Matas,
N. Sebe, and M. Welling, Eds., Cham: Springer International Publishing,
2016, pp. 646–661, ISBN: 978-3-319-46493-0.

[33] H. Wu and X. Gu, “Towards dropout training for convolutional neural
networks,” Neural Networks, vol. 71, pp. 1–10, 2015, ISSN: 0893-6080. DOI:
https://doi.org/10.1016/j.neunet.2015.07.007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S089360801500
1446.

[34] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and J.
Garcia-Rodriguez, “A review on deep learning techniques applied to seman-
tic segmentation,” 2017. arXiv: 1704.06857 [cs.CV].

[35] J. Bertels, T. Eelbode, M. Berman, D. Vandermeulen, F. Maes, R. Bisschops,
and M. B. Blaschko, “Optimizing the dice score and jaccard index for medical
image segmentation: Theory and practice,” in Medical Image Computing and
Computer Assisted Intervention – MICCAI 2019, D. Shen, T. Liu, T. M. Peters,
L. H. Staib, C. Essert, S. Zhou, P.-T. Yap, and A. Khan, Eds., Cham: Springer
International Publishing, 2019, pp. 92–100, ISBN: 978-3-030-32245-8.

[36] G. Csurka, D. Larlus, F. Perronnin, and F. Meylan, “What is a good evaluation
measure for semantic segmentation?.,” in BMVC, Citeseer, vol. 27, 2013,
p. 2013.

https://arxiv.org/abs/1801.01450
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1207.0580
https://arxiv.org/abs/1904.13310
https://arxiv.org/abs/1708.04552
https://doi.org/https://doi.org/10.1016/j.neunet.2015.07.007
http://www.sciencedirect.com/science/article/pii/S0893608015001446
http://www.sciencedirect.com/science/article/pii/S0893608015001446
https://arxiv.org/abs/1704.06857

116 Martinussen: Roof Geometry Inference using Remote Sensing Data

[37] F. Milletari, N. Navab, and S. Ahmadi, “V-net: Fully convolutional neural
networks for volumetric medical image segmentation,” in 2016 Fourth
International Conference on 3D Vision (3DV), Oct. 2016, pp. 565–571. DOI:
10.1109/3DV.2016.79.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information Pro-
cessing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
Eds., Curran Associates, Inc., 2012, pp. 1097–1105. [Online]. Available:
http://papers.nips.cc/paper/4824-imagenet-classification-with-
deep-convolutional-neural-networks.pdf.

[39] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014. arXiv: 1409.1556 [cs.CV].

[40] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” 2014.
arXiv: 1409.4842 [cs.CV].

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2016.

[42] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Jun. 2015.

[43] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger,
W. M. Wells, and A. F. Frangi, Eds., Cham: Springer International Publishing,
2015, pp. 234–241, ISBN: 978-3-319-24574-4.

[44] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional
encoder-decoder architecture for image segmentation,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481–2495,
Dec. 2017, ISSN: 1939-3539. DOI: 10.1109/TPAMI.2016.2644615.

[45] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2014.

[46] R. Girshick, “Fast r-cnn,” 2015. arXiv: 1504.08083 [cs.CV].

[47] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-CNN: Towards real-time
object detection with region proposal networks,” in Advances in Neural
Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M.
Sugiyama, and R. Garnett, Eds., Curran Associates, Inc., 2015, pp. 91–99.
[Online]. Available: http://papers.nips.cc/paper/5638-faster-r-
cnn-towards-real-time-object-detection-with-region-proposal-
networks.pdf.

https://doi.org/10.1109/3DV.2016.79
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.4842
https://doi.org/10.1109/TPAMI.2016.2644615
https://arxiv.org/abs/1504.08083
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf

Bibliography 117

[48] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,” in The IEEE
International Conference on Computer Vision (ICCV), Oct. 2017.

[49] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,”
in Advances in Neural Information Processing Systems 30, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds., Curran Associates, Inc., 2017, pp. 3856–3866. [Online]. Available:
http://papers.nips.cc/paper/6975-dynamic-routing-between-capsu
les.pdf.

[50] R. LaLonde and U. Bagci, “Capsules for object segmentation,” 2018. arXiv:
1804.04241 [stat.ML].

[51] D. Kudinov, D. Hedges, and O. Maher, Reconstructing 3d buildings from
aerial lidar with ai: Details. [Online]. Available: https://medium.com/
geoai/reconstructing-3d-buildings-from-aerial-lidar-with-ai-
details-6a81cb3079c0 (visited on 06/23/2020).

[52] X. Wang, D. Fouhey, and A. Gupta, “Designing deep networks for surface
normal estimation,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 539–547.

[53] X. Qi, R. Liao, Z. Liu, R. Urtasun, and J. Jia, “Geonet: Geometric neural
network for joint depth and surface normal estimation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 283–291.

[54] Y. Ben-Shabat, M. Lindenbaum, and A. Fischer, “Nesti-net: Normal estima-
tion for unstructured 3d point clouds using convolutional neural networks,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2019, pp. 10 112–10 120.

[55] D. E. Rumelhart, R. Durbin, R. Golden, and Y. Chauvin, “Backpropagation:
The basic theory,” Backpropagation: Theory, architectures and applications,
pp. 1–34, 1995.

[56] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification,” in The IEEE
International Conference on Computer Vision (ICCV), Dec. 2015.

[57] S. Ruder, An overview of gradient descent optimization algorithms, 2016.
arXiv: 1609.04747 [cs.LG].

[58] R. Caruana, S. Lawrence, and C. L. Giles, “Overfitting in neural nets: Back-
propagation, conjugate gradient, and early stopping,” in Advances in neural
information processing systems, 2001, pp. 402–408.

[59] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014.
arXiv: 1412.6980 [cs.LG].

[60] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp. 41–75,
1997.

http://papers.nips.cc/paper/6975-dynamic-routing-between-capsules.pdf
http://papers.nips.cc/paper/6975-dynamic-routing-between-capsules.pdf
https://arxiv.org/abs/1804.04241
https://medium.com/geoai/reconstructing-3d-buildings-from-aerial-lidar-with-ai-details-6a81cb3079c0
https://medium.com/geoai/reconstructing-3d-buildings-from-aerial-lidar-with-ai-details-6a81cb3079c0
https://medium.com/geoai/reconstructing-3d-buildings-from-aerial-lidar-with-ai-details-6a81cb3079c0
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1412.6980

118 Martinussen: Roof Geometry Inference using Remote Sensing Data

[61] J. Sola and J. Sevilla, “Importance of input data normalization for the
application of neural networks to complex industrial problems,” IEEE Trans-
actions on Nuclear Science, vol. 44, no. 3, pp. 1464–1468, Jun. 1997. DOI:
10.1109/23.589532.

[62] C. Fiorio and J. Gustedt, “Two linear time union-find strategies for image
processing,” Theoretical Computer Science, vol. 154, no. 2, pp. 165–181,
1996.

[63] K. Wu, E. Otoo, and A. Shoshani, “Optimizing connected component label-
ing algorithms,” in Medical Imaging 2005: Image Processing, International
Society for Optics and Photonics, vol. 5747, 2005, pp. 1965–1976.

[64] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm for
discovering clusters in large spatial databases with noise.,” in Kdd, vol. 96,
1996, pp. 226–231.

[65] N. S. Altman, “An introduction to kernel and nearest-neighbor nonpara-
metric regression,” The American Statistician, vol. 46, no. 3, pp. 175–185,
1992.

[66] P. Bose, S. Cabello, O. Cheong, J. Gudmundsson, M. Van Kreveld, and B.
Speckmann, “Area-preserving approximations of polygonal paths,” Journal
of Discrete Algorithms, vol. 4, no. 4, pp. 554–566, 2006.

[67] J. Gudmundsson, G. Narasimhan, and M. Smid, “Distance-preserving ap-
proximations of polygonal paths,” Computational Geometry, vol. 36, no. 3,
pp. 183–196, 2007.

[68] D. Z. Chen, O. Daescu, J. Hershberger, P. M. Kogge, N. Mi, and J. Snoeyink,
“Polygonal path simplification with angle constraints,” Computational Ge-
ometry, vol. 32, no. 3, pp. 173–187, 2005.

[69] M. Visvalingam and J. D. Whyatt, “Line generalisation by repeated elimina-
tion of points,” The cartographic journal, vol. 30, no. 1, pp. 46–51, 1993.

[70] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature,” Cartograph-
ica: the international journal for geographic information and geovisualization,
vol. 10, no. 2, pp. 112–122, 1973.

[71] B. Farjad, A. Gupta, H. Sartipizadeh, and A. Cannon, “A novel approach
for selecting extreme climate change scenarios for climate change impact
studies,” Science of The Total Environment, vol. 678, Apr. 2019. DOI: 10.
1016/j.scitotenv.2019.04.218.

[72] GDAL/OGR contributors, GDAL/OGR geospatial data abstraction software
library, Open Source Geospatial Foundation, 2019. [Online]. Available:
https://gdal.org.

[73] S. Gillies et al., Rasterio: Geospatial raster i/o for Python programmers,
Mapbox, 2013–. [Online]. Available: https://github.com/mapbox/raste
rio.

https://doi.org/10.1109/23.589532
https://doi.org/10.1016/j.scitotenv.2019.04.218
https://doi.org/10.1016/j.scitotenv.2019.04.218
https://gdal.org
https://github.com/mapbox/rasterio
https://github.com/mapbox/rasterio

Bibliography 119

[74] S. Gillies et al., Fiona is ogr’s neat, nimble, no-nonsense api, Toblerity, 2011–.
[Online]. Available: https://github.com/Toblerity/Fiona.

[75] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.
Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,
D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu,
and X. Zheng, “Tensorflow: A system for large-scale machine learning,” in
12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), 2016, pp. 265–283. [Online]. Available: https://www.usenix.
org/system/files/conference/osdi16/osdi16-abadi.pdf.

[76] J. Häme. (Jul. 3, 2019). “Shapefile vs. GeoJSON vs. GeoPackage,” Terra-
monitor Feed, [Online]. Available: https://feed.terramonitor.com/
shapefile-vs-geopackage-vs-geojson/ (visited on 08/29/2019).

[77] E. Rouault. (2015). “File:gdalvrt.xsd — xml schema for gdal vrt files.,”
[Online]. Available: https://raw.githubusercontent.com/OSGeo/gdal/
master/gdal/data/gdalvrt.xsd (visited on 11/07/2019).

https://github.com/Toblerity/Fiona
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://feed.terramonitor.com/shapefile-vs-geopackage-vs-geojson/
https://feed.terramonitor.com/shapefile-vs-geopackage-vs-geojson/
https://raw.githubusercontent.com/OSGeo/gdal/master/gdal/data/gdalvrt.xsd
https://raw.githubusercontent.com/OSGeo/gdal/master/gdal/data/gdalvrt.xsd

Appendix A

GIS pre-processing

A.1 Mapping between coordinate systems

GDAL provides the gdaltransform utility for transforming GIS data between coor-
dinate systems, for example converting from latitude and longitude to UTM 32V
here:

Code listing A.1: Coordinate system transformation using gdaltransform.

$ gdaltransform \
-s_srs EPSG:4236 \
-t_srs EPSG:25832 \
${source_data} ${target}

Where $ indicates a shell, such as bash, where GDAL has been installed and is
available in the PATH.

A.2 Zero-buffering vector datasets

Section 2.2 discusses irregular vector data and how such vector features can be
corrected by applying a zero buffer. The ST_buffer() PostGIS function can be
applied to arbitrary geometric data with the ogr2ogr utility like so:

Code listing A.2: Zero-buffering vector dataset using ogr2ogr.

$ ogr2ogr -f "GPKG" ${output_file} ${input_file} \
-sql "select ST_buffer(Geometry, 0.0)"

Here we have also converted the given vector data file to the GeoPackage format.
While geographic data providers use a wide array of file formats, most commonly
GeoJSON, ESRI Shapefiles, and GML, we convert all files to the modern GeoPackage

121

122 Martinussen: Roof Geometry Inference using Remote Sensing Data

format. GeoPackage supports unicode characters and has no length limit on data
fields, and is therefore considered the best format for modern GIS pipelines [76].
ogr2ogr supports file conversions between most common vector file formats, which
makes the data pipeline generalizable data sourced from different providers.

A.3 Merging raster datasets

Aerial photography and LiDAR data is usually provided in several smaller raster
files organized in a tiled pattern in order to reduce individual file sizes. Each file
is a .geotiff file, a container format which specifies relevant metadata and the
underlying image data in a lossless format such as PNG. This poses the problem of
having to look up which files that cover a given geographic region of interest and
merging these files together before processing them.

A simpler approach is to create a GDAL Virtual Format file (VRT), a virtual
dataset file referencing all the respective tiles and bands (GIS uses the term bands
for what we would otherwise refer to as image channels). In simple cases, a VRT
file can be autogenerated with the gdalbuildvrt GDAL utility.

Code listing A.3: Virtual merger of raster tiles using gdalbuildvrt.

$ gdalbuildvrt raster.vrt ${raster_directory}/*.tif

The resulting vrt file behaves like single, merged file, and can be read and processed
by most GIS tools. In practice it is just a simple XML file referencing all the
underlying .geotiff files, thus alleviating the need to load the entire raster dataset
into memory every time.

Using the same file format, we can also combine overlapping raster datasets
by expanding the number of channels in the resulting raster,

Code listing A.4: Merging overlapping raster datasets using gdalbuildvrt.

$ gdalbuildvrt \
-resolution ${resolution} \
combined.vrt \
-separate \
${vrt1} ${vrt2}

where -resolution can be set to either highest, lowest, or average, depending
on how you want to handle datasets with different raster resolutions. This is how
we merge the aerial photography (RGB) data with the DSM data (Z), resulting
in a single consistent ZRGB dataset. The resulting VRT file will only contain the
first band from each source file, and needs to be manually edited according to the

Chapter A: GIS pre-processing 123

VRT schema [77] in order to include the green and blue bands of the original RGB
dataset. Color interpretations for a ZRGB VRT raster are specified as follows:

Code listing A.5: Setting color interpretation of multi-channel VRT rasters.

<ColorInterp>Gray</ColorInterp>
<ColorInterp>Red</ColorInterp>
<ColorInterp>Green</ColorInterp>
<ColorInterp>Blue</ColorInterp>

Remember to increment the band and SourceBand numbers as well; the following
eight lines should be placed at suitable locations in the VRT XML file.

Code listing A.6: Specifying source bands for multi-channel VRT rasters.

<VRTRasterBand dataType="Byte" band="1">
<VRTRasterBand dataType="Byte" band="2">
<VRTRasterBand dataType="Byte" band="3">
<VRTRasterBand dataType="Byte" band="4">

<SourceBand>1</SourceBand>
<SourceBand>2</SourceBand>
<SourceBand>3</SourceBand>
<SourceBand>4</SourceBand>

Jakob G
erhard M

artinussen
Three-dim

ensional Roof Surface G
eom

etry Inference U
sing Rem

ote Sensing D
ata

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Jakob Gerhard Martinussen

Three-dimensional Roof Surface
Geometry Inference Using Remote
Sensing Data

Master’s thesis in Applied Physics and Mathematics

Supervisor: Erlend Aune

July 2020

	Abstract
	Sammendrag
	Introduction
	Research questions
	Problem description

	Thesis disposition

	Data and Pre-Processing
	Coordinate Systems
	Data Types
	Vector data
	Raster data

	Datasets
	Raster datasets
	Vector datasets

	Tiling Algorithm
	Masking Algorithm
	Surface Rasterization Algorithm
	Desirable surface raster properties
	The "surface normal" raster format
	Handling overlapping surface polygons
	Handling expensive spatial queries
	Handling non-planar polygons

	Overview

	Modeling
	Convolutional Neural Networks (CNNs)
	Convolution
	Activation functions
	Pooling
	Batch normalization
	Dropout

	Semantic Segmentation
	Accuracy, sensitivity, and specificity
	Intersection over union and dice coefficient
	Binary cross-entropy and soft losses
	State-of-the-art
	The U-Net model architecture

	Surface Normal Vector Prediction
	Related work
	CNN architecture for predicting surface normal vectors

	Optimization
	Multitask learning

	Raster Normalization
	RGB rasters
	LiDAR rasters

	Post-processing
	Connected region labeling
	Instance Clustering
	DBSCAN
	k-nearest neighbour noise classification

	Vectorization
	Two-dimensional polygonization
	Simplification
	Three-dimensional reconstruction

	Experiments
	Experimental Setup
	Training procedure
	Software
	Hardware and performance

	Semantic Segmentation
	Features
	LiDAR data
	RGB data
	Combined data

	Multitask learning

	Conclusion and Further Work
	Bibliography
	GIS pre-processing
	Mapping between coordinate systems
	Zero-buffering vector datasets
	Merging raster datasets

